--- library_name: transformers license: cc-by-sa-4.0 base_model: nlpaueb/legal-bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: legal-bert-Federal-Regulations results: [] --- # legal-bert-Federal-Regulations This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6277 - Accuracy: 0.7154 - Precision: 0.7483 - Recall: 0.7154 - F1: 0.7248 - Roc Auc: 0.7853 - Confusion Matrix: [[2451, 934], [445, 1016]] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc | Confusion Matrix | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|:---------------------------:| | 0.606 | 1.0 | 600 | 0.6376 | 0.6605 | 0.7333 | 0.6605 | 0.6745 | 0.7564 | [[2110, 1275], [370, 1091]] | | 0.5312 | 2.0 | 1200 | 0.5504 | 0.7418 | 0.7473 | 0.7418 | 0.7442 | 0.7829 | [[2708, 677], [574, 887]] | | 0.4563 | 3.0 | 1800 | 0.6277 | 0.7154 | 0.7483 | 0.7154 | 0.7248 | 0.7853 | [[2451, 934], [445, 1016]] | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.1