Upload 2 files
Browse filesgpt2_config.py is training configuration using SimpleLLM. Run for 200,000 iterations on openwebtext dataset
- ckpt.pt +3 -0
- gpt2_config.py +60 -0
ckpt.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eccbc24897667135755aad4694f899a7ed0e62f29a8a00fddb8cf8e2d566d6dc
|
3 |
+
size 1492570501
|
gpt2_config.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##################################################
|
2 |
+
# Data config for Shakespeare
|
3 |
+
##################################################
|
4 |
+
test_size = 0.1
|
5 |
+
seed = 110892
|
6 |
+
shuffle = True
|
7 |
+
dataset_key = 'train'
|
8 |
+
num_proc = -1 # -1 for all, 1 for single process, 2 for two processes, etc.
|
9 |
+
tokenizer = 'gpt2' # 'gpt2' or 'cl100k_base' or 'gpt-4'
|
10 |
+
|
11 |
+
##################################################
|
12 |
+
# Training config for Shakespeare
|
13 |
+
##################################################
|
14 |
+
out_dir = 'gpt2'
|
15 |
+
eval_interval = 2000
|
16 |
+
log_interval = 1
|
17 |
+
eval_iters = 200
|
18 |
+
eval_only = False # if True, script exits right after the first eval
|
19 |
+
always_save_checkpoint = True # if True, always save a checkpoint after each eval
|
20 |
+
init_from = 'resume' # 'scratch' or 'resume' or 'gpt2*'
|
21 |
+
# wandb logging
|
22 |
+
wandb_log = False # disabled by default
|
23 |
+
wandb_project = 'SimpleLLM'
|
24 |
+
wandb_run_name = 'gpt2' # 'run' + str(time.time())
|
25 |
+
# data
|
26 |
+
dataset = 'openwebtext'
|
27 |
+
gradient_accumulation_steps = 5 * 8 # used to simulate larger batch sizes
|
28 |
+
batch_size = 12 # if gradient_accumulation_steps > 1, this is the micro-batch size
|
29 |
+
block_size = 1024
|
30 |
+
# model
|
31 |
+
n_layer = 12
|
32 |
+
n_head = 12
|
33 |
+
n_embd = 768
|
34 |
+
dropout = 0.0 # for pretraining 0 is good, for finetuning try 0.1+
|
35 |
+
bias = False # do we use bias inside LayerNorm and Linear layers?
|
36 |
+
# adamw optimizer
|
37 |
+
learning_rate = 6e-4 # max learning rate
|
38 |
+
max_iters = 600000 # total number of training iterations
|
39 |
+
weight_decay = 1e-1
|
40 |
+
beta1 = 0.9
|
41 |
+
beta2 = 0.95
|
42 |
+
grad_clip = 1.0 # clip gradients at this value, or disable if == 0.0
|
43 |
+
# learning rate decay settings
|
44 |
+
decay_lr = True # whether to decay the learning rate
|
45 |
+
warmup_iters = 2000 # how many steps to warm up for
|
46 |
+
lr_decay_iters = 600000 # should be ~= max_iters per Chinchilla
|
47 |
+
min_lr = 6e-5 # minimum learning rate, should be ~= learning_rate/10 per Chinchilla
|
48 |
+
# DDP settings
|
49 |
+
backend = 'nccl' # 'nccl', 'gloo', etc.
|
50 |
+
|
51 |
+
##################################################
|
52 |
+
# Generator config for Shakespeare
|
53 |
+
##################################################
|
54 |
+
# init_from = 'resume' # either 'resume' (from an out_dir) or a gpt2 variant (e.g. 'gpt2-xl')
|
55 |
+
start = "\n" # or "<|endoftext|>" or etc. Can also specify a file, use as: "FILE:prompt.txt"
|
56 |
+
num_samples = 10 # number of samples to draw
|
57 |
+
max_new_tokens = 500 # number of tokens generated in each sample
|
58 |
+
temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions
|
59 |
+
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability
|
60 |
+
seed = 1337
|