--- library_name: transformers base_model: Samuael/ethiopic-asr-characters tags: - generated_from_trainer datasets: - alffa_amharic metrics: - wer model-index: - name: ethiopic-asr-characters results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: alffa_amharic type: alffa_amharic config: clean split: None args: clean metrics: - type: wer value: 0.29963354171157575 name: Wer --- # ethiopic-asr-characters This model is a fine-tuned version of [Samuael/ethiopic-asr-characters](https://huggingface.co/Samuael/ethiopic-asr-characters) on the alffa_amharic dataset. It achieves the following results on the evaluation set: - Loss: 0.4428 - Wer: 0.2996 - Phoneme Cer: 0.1421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Phoneme Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:-----------:| | 0.1559 | 0.2312 | 200 | 0.5540 | 0.3212 | 0.1475 | | 0.1228 | 0.4624 | 400 | 0.5394 | 0.3142 | 0.1466 | | 0.069 | 0.6936 | 600 | 0.5525 | 0.3139 | 0.1466 | | 0.0997 | 0.9249 | 800 | 0.5531 | 0.3118 | 0.1462 | | 0.0732 | 1.1561 | 1000 | 0.5644 | 0.3196 | 0.1465 | | 0.1637 | 1.3873 | 1200 | 0.5367 | 0.3185 | 0.1468 | | 0.1145 | 1.6185 | 1400 | 0.5215 | 0.3180 | 0.1468 | | 0.1499 | 1.8497 | 1600 | 0.4985 | 0.3141 | 0.1455 | | 0.1975 | 2.0809 | 1800 | 0.4814 | 0.3114 | 0.1446 | | 0.2116 | 2.3121 | 2000 | 0.4855 | 0.3085 | 0.1446 | | 0.2384 | 2.5434 | 2200 | 0.4702 | 0.3083 | 0.1441 | | 0.4346 | 2.7746 | 2400 | 0.4762 | 0.3063 | 0.1435 | | 0.3156 | 3.0058 | 2600 | 0.4677 | 0.3044 | 0.1432 | | 0.5558 | 3.2370 | 2800 | 0.4574 | 0.2993 | 0.1425 | | 0.2787 | 3.4682 | 3000 | 0.4478 | 0.2989 | 0.1420 | | 0.3268 | 3.6994 | 3200 | 0.4466 | 0.2978 | 0.1418 | | 0.3461 | 3.9306 | 3400 | 0.4428 | 0.2996 | 0.1421 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3