File size: 6,074 Bytes
9e486be c2eb01d e6a0448 47b5241 9e486be b89e29d 9e486be 48470f0 d8c436e 9e486be b89e29d 9e486be 325d3f4 9e486be b89e29d 9e486be 48470f0 9e486be b89e29d 309db04 b89e29d 309db04 b89e29d 309db04 b89e29d 309db04 b89e29d 309db04 66ae84f 9e486be 309db04 b89e29d 9e486be b89e29d 9e486be b89e29d 9e486be b89e29d 9e486be b89e29d 9e486be b89e29d 9e486be d8c436e b89e29d 9e486be 325d3f4 d8c436e 590318d 325d3f4 590318d 325d3f4 590318d 309db04 325d3f4 309db04 590318d 325d3f4 309db04 590318d 309db04 590318d d8c436e 590318d 50a5adc 590318d 50a5adc 590318d 50a5adc 590318d 50a5adc 325d3f4 50a5adc b89e29d 9e486be b89e29d 9e486be b89e29d 9e486be 66ae84f 9e486be b89e29d 9e486be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
---
license: other
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- llama
- decapoda-research-13b-hf
- prompt answering
- peft
---
## Model Card for Model ID
This repository contains a LLaMA-13B further fine-tuned model on conversations and question answering prompts.
⚠️ **I used [LLaMA-13B-hf](https://huggingface.co/decapoda-research/llama-13b-hf) as a base model, so this model is for Research purpose only (See the [license](https://huggingface.co/decapoda-research/llama-13b-hf/blob/main/LICENSE))**
## Model Details
Anyone can use (ask prompts) and play with the model using the pre-existing Jupyter Notebook in the **noteboooks** folder.
### Model Description
The decapoda-research/llama-13b-hf model was finetuned on conversations and question answering prompts.
**Developed by:** [More Information Needed]
**Shared by:** [More Information Needed]
**Model type:** Causal LM
**Language(s) (NLP):** English, multilingual
**License:** Research
**Finetuned from model:** decapoda-research/llama-13b-hf
## Model Sources [optional]
**Repository:** [More Information Needed]
**Paper:** [More Information Needed]
**Demo:** [More Information Needed]
## Uses
The model can be used for prompt answering
### Direct Use
The model can be used for prompt answering
### Downstream Use
Generating text and prompt answering
## Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
# Usage
## Creating prompt
The model was trained on the following kind of prompt:
```python
def generate_prompt(instruction: str, input_ctxt: str = None) -> str:
if input_ctxt:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input_ctxt}
### Response:"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""
```
## How to Get Started with the Model
Use the code below to get started with the model.
1. You can git clone the repo, which contains also the artifacts for the base model for simplicity and completeness, and run the following code snippet to load the mode:
```python
import torch
from transformers import GenerationConfig, LlamaTokenizer, LlamaForCausalLM
MODEL_NAME = "Sandiago21/llama-7b-hf-prompt-answering"
config = PeftConfig.from_pretrained(MODEL_NAME)
model = LlamaForCausalLM.from_pretrained(
config.base_model_name_or_path,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map="auto",
)
tokenizer = LlamaTokenizer.from_pretrained(MODEL_NAME)
model = PeftModel.from_pretrained(model, MODEL_NAME)
generation_config = GenerationConfig(
temperature=0.2,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=32,
)
model.eval()
if torch.__version__ >= "2":
model = torch.compile(model)
```
### Example of Usage
```python
instruction = "What is the capital city of Greece and with which countries does Greece border?"
input_ctxt = None # For some tasks, you can provide an input context to help the model generate a better response.
prompt = generate_prompt(instruction, input_ctxt)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
input_ids = input_ids.to(model.device)
with torch.no_grad():
outputs = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
)
response = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
print(response)
>>> The capital city of Greece is Athens and it borders Turkey, Bulgaria, Macedonia, Albania, and the Aegean Sea.
```
2. You can also directly call the model from HuggingFace using the following code snippet:
```python
import torch
from transformers import GenerationConfig, LlamaTokenizer, LlamaForCausalLM
MODEL_NAME = "Sandiago21/llama-7b-hf-prompt-answering"
BASE_MODEL = "decapoda-research/llama-7b-hf
config = PeftConfig.from_pretrained(MODEL_NAME)
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map="auto",
)
tokenizer = LlamaTokenizer.from_pretrained(MODEL_NAME)
model = PeftModel.from_pretrained(model, MODEL_NAME)
generation_config = GenerationConfig(
temperature=0.2,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=32,
)
model.eval()
if torch.__version__ >= "2":
model = torch.compile(model)
```
### Example of Usage
```python
instruction = "What is the capital city of Greece and with which countries does Greece border?"
input_ctxt = None # For some tasks, you can provide an input context to help the model generate a better response.
prompt = generate_prompt(instruction, input_ctxt)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
input_ids = input_ids.to(model.device)
with torch.no_grad():
outputs = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
)
response = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
print(response)
>>> The capital city of Greece is Athens and it borders Turkey, Bulgaria, Macedonia, Albania, and the Aegean Sea.
```
## Training Details
### Training Data
The decapoda-research/llama-13b-hf was finetuned on conversations and question answering data
### Training Procedure
The decapoda-research/llama-13b-hf model was further trained and finetuned on question answering and prompts data for 1 epoch (approximately 10 hours of training on a single GPU)
## Model Architecture and Objective
The model is based on decapoda-research/llama-13b-hf model and finetuned adapters on top of the main model on conversations and question answering data. |