File size: 6,996 Bytes
9e486be
 
 
 
 
c2eb01d
e6a0448
 
 
47b5241
 
9e486be
 
b89e29d
9e486be
48470f0
d8c436e
 
9e486be
 
b89e29d
9e486be
6e1cb11
9e486be
b89e29d
9e486be
48470f0
9e486be
b89e29d
309db04
b89e29d
309db04
b89e29d
309db04
b89e29d
309db04
b89e29d
309db04
66ae84f
9e486be
309db04
b89e29d
9e486be
b89e29d
 
 
9e486be
b89e29d
9e486be
 
 
 
b89e29d
9e486be
 
 
 
b89e29d
9e486be
 
 
 
b89e29d
9e486be
 
 
 
d8c436e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b89e29d
9e486be
 
 
225d66b
325d3f4
d8c436e
590318d
13e1339
590318d
 
6e1cb11
325d3f4
 
 
225d66b
7c60e5e
225d66b
590318d
225d66b
590318d
 
 
309db04
325d3f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225d66b
325d3f4
 
 
13e1339
325d3f4
 
6e1cb11
225d66b
325d3f4
 
 
 
225d66b
325d3f4
 
 
 
 
 
 
 
 
309db04
590318d
 
 
 
325d3f4
309db04
 
590318d
 
 
309db04
 
590318d
d8c436e
590318d
 
50a5adc
590318d
 
 
50a5adc
590318d
 
 
 
 
 
 
50a5adc
590318d
 
50a5adc
325d3f4
50a5adc
 
63caac3
b89e29d
9e486be
6e1cb11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e486be
b89e29d
9e486be
 
 
 
b89e29d
9e486be
66ae84f
9e486be
 
b89e29d
9e486be
6e1cb11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
---
license: other
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- llama
- decapoda-research-13b-hf
- prompt answering
- peft
---

## Model Card for Model ID

This repository contains a LLaMA-13B further fine-tuned model on conversations and question answering prompts.

⚠️ **I used [LLaMA-13B-hf](https://huggingface.co/decapoda-research/llama-13b-hf) as a base model, so this model is for Research purpose only (See the [license](https://huggingface.co/decapoda-research/llama-13b-hf/blob/main/LICENSE))**


## Model Details

Anyone can use (ask prompts) and play with the model using the pre-existing Jupyter Notebook in the **noteboooks** folder. The Jupyter Notebook contains example code to load the model and ask prompts to it as well as example prompts to get you started.

### Model Description

The decapoda-research/llama-13b-hf model was finetuned on conversations and question answering prompts.

**Developed by:** [More Information Needed]

**Shared by:** [More Information Needed]

**Model type:** Causal LM

**Language(s) (NLP):** English, multilingual

**License:** Research

**Finetuned from model:** decapoda-research/llama-13b-hf


## Model Sources [optional]

**Repository:** [More Information Needed]
**Paper:** [More Information Needed]
**Demo:** [More Information Needed]

## Uses

The model can be used for prompt answering


### Direct Use

The model can be used for prompt answering


### Downstream Use

Generating text and prompt answering


## Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.


# Usage

## Creating prompt

The model was trained on the following kind of prompt:

```python
def generate_prompt(instruction: str, input_ctxt: str = None) -> str:
    if input_ctxt:
        return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Input:
{input_ctxt}

### Response:"""
    else:
        return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Response:"""
```

## How to Get Started with the Model

Use the code below to get started with the model.

1. You can git clone the repo, which contains also the artifacts for the base model for simplicity and completeness, and run the following code snippet to load the mode:

```python
import torch
from peft import PeftConfig, PeftModel
from transformers import GenerationConfig, LlamaTokenizer, LlamaForCausalLM

MODEL_NAME = "Sandiago21/llama-13b-hf-prompt-answering"

config = PeftConfig.from_pretrained(MODEL_NAME)

# Setting the path to look at your repo directory, assuming that you are at that directory when running this script
config.base_model_name_or_path = "decapoda-research/llama-13b-hf/"

model = LlamaForCausalLM.from_pretrained(
    config.base_model_name_or_path,
    load_in_8bit=True,
    torch_dtype=torch.float16,
    device_map="auto",
)

tokenizer = LlamaTokenizer.from_pretrained(MODEL_NAME)

model = PeftModel.from_pretrained(model, MODEL_NAME)

generation_config = GenerationConfig(
    temperature=0.2,
    top_p=0.75,
    top_k=40,
    num_beams=4,
    max_new_tokens=32,
)

model.eval()
if torch.__version__ >= "2":
    model = torch.compile(model)
```

### Example of Usage
```python
instruction = "What is the capital city of Greece and with which countries does Greece border?"
input_ctxt = None  # For some tasks, you can provide an input context to help the model generate a better response.

prompt = generate_prompt(instruction, input_ctxt)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
input_ids = input_ids.to(model.device)

with torch.no_grad():
    outputs = model.generate(
        input_ids=input_ids,
        generation_config=generation_config,
        return_dict_in_generate=True,
        output_scores=True,
    )

response = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
print(response)

>>> The capital city of Greece is Athens and it borders Turkey, Bulgaria, Macedonia, Albania, and the Aegean Sea.
```

2. You can directly call the model from HuggingFace using the following code snippet:

```python
import torch
from peft import PeftConfig, PeftModel
from transformers import GenerationConfig, LlamaTokenizer, LlamaForCausalLM

MODEL_NAME = "Sandiago21/llama-13b-hf-prompt-answering"
BASE_MODEL = "decapoda-research/llama-13b-hf"

config = PeftConfig.from_pretrained(MODEL_NAME)

model = LlamaForCausalLM.from_pretrained(
    BASE_MODEL,
    load_in_8bit=True,
    torch_dtype=torch.float16,
    device_map="auto",
)

tokenizer = LlamaTokenizer.from_pretrained(MODEL_NAME)

model = PeftModel.from_pretrained(model, MODEL_NAME)

generation_config = GenerationConfig(
    temperature=0.2,
    top_p=0.75,
    top_k=40,
    num_beams=4,
    max_new_tokens=32,
)

model.eval()
if torch.__version__ >= "2":
    model = torch.compile(model)
```

### Example of Usage
```python
instruction = "What is the capital city of Greece and with which countries does Greece border?"
input_ctxt = None  # For some tasks, you can provide an input context to help the model generate a better response.

prompt = generate_prompt(instruction, input_ctxt)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
input_ids = input_ids.to(model.device)

with torch.no_grad():
    outputs = model.generate(
        input_ids=input_ids,
        generation_config=generation_config,
        return_dict_in_generate=True,
        output_scores=True,
    )

response = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
print(response)

>>> The capital city of Greece is Athens and it borders Turkey, Bulgaria, Macedonia, Albania, and the Aegean Sea.
```


## Training Details

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 2
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu117
- Datasets 2.12.0
- Tokenizers 0.12.1

### Training Data

The decapoda-research/llama-13b-hf was finetuned on conversations and question answering data


### Training Procedure

The decapoda-research/llama-13b-hf model was further trained and finetuned on question answering and prompts data for 1 epoch (approximately 10 hours of training on a single GPU)


## Model Architecture and Objective

The model is based on decapoda-research/llama-13b-hf model and finetuned adapters on top of the main model on conversations and question answering data.