--- license: apache-2.0 tags: - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: whisper-large-v2-greek results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fleurs type: fleurs config: el_gr split: test args: el_gr metrics: - name: Wer type: wer value: 0.17739223993006523 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-large-v2-greek This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.2734 - Wer Ortho: 0.2102 - Wer: 0.1774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.1809 | 1.0 | 274 | 0.2244 | 0.2261 | 0.1947 | | 0.0977 | 2.0 | 549 | 0.2306 | 0.2204 | 0.1856 | | 0.0594 | 3.0 | 824 | 0.2332 | 0.2137 | 0.1814 | | 0.0454 | 4.0 | 1099 | 0.2667 | 0.2315 | 0.1985 | | 0.028 | 5.0 | 1374 | 0.2579 | 0.2151 | 0.1822 | | 0.022 | 6.0 | 1649 | 0.2674 | 0.2188 | 0.1863 | | 0.0202 | 6.98 | 1918 | 0.2734 | 0.2102 | 0.1774 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3