--- tags: - pytorch_model_hub_mixin - model_hub_mixin license: mit datasets: - mlfoundations/datacomp_1b base_model: - apple/DFN5B-CLIP-ViT-H-14 --- ## Official implementation of fine-tuned ViT-H/14 ProLIP on DataComp 1B - This weight is a fine-tuned version of ViT-H/14 by Probabilistic Language-Image Pre-Training (ProLIP) - Pre-trained weight - https://huggingface.co/apple/DFN5B-CLIP-ViT-H-14 - Fine-tuned dataset - DataComp 1B / Seen samples 1.28B - Architectural difference - ProLIP text encoder uses the `[CLS]` token for pooling, while the original model uses the last token without specifying the `[CLS]` token. ### Overview - Paper: https://arxiv.org/abs/2410.18857 - GitHub: https://github.com/naver-ai/prolip - More models are available at https://huggingface.co/collections/SanghyukChun/prolip-6712595dfc87fd8597350291 ### Performance overview - Zero-shot ImageNet-1k top-1 accuracy: 79.4% - Zero-shot ImageNet distribution shifts: 68.3% - Zero-shot VTAB performance: 64.4% - Zero-shot retrieval performance: 61.6% - Average zero-shot performance on 38 tasks: 66.9% ```python import requests from PIL import Image import torch from prolip.model import ProLIPHF from transformers import CLIPProcessor from prolip.tokenizer import HFTokenizer import warnings warnings.simplefilter(action='ignore', category=FutureWarning) processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16") model = ProLIPHF.from_pretrained("SanghyukChun/ProLIP-ViT-H-14-FT-DC-1B-1_28M") tokenizer = HFTokenizer("apple/DFN5B-CLIP-ViT-H-14", context_length=77) url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(images=image, return_tensors="pt", padding=True) texts = ["A couple of cats laying on top of a pink blanket.", "A man walks through a flooded road during a rainstorm", "photo"] texts = tokenizer(texts) outputs = model(image=inputs["pixel_values"], text=texts) l2_logit = outputs["image_features"]["mean"] @ outputs["text_features"]["mean"].T i_unc = torch.exp(outputs["image_features"]["std"]).sum(dim=-1) t_unc = torch.exp(outputs["text_features"]["std"]).sum(dim=-1) csd_logit = l2_logit - 0.5 * t_unc csd_logit2 = l2_logit.T - 0.5 * i_unc print("Mean-only image-to-text logits (by L2 distance):", l2_logit) print("Uncertainty-aware image-to-text logits (by CSD):", csd_logit) print("Uncertainty-aware text-to-image logits (by CSD):", csd_logit2.T) print("Image uncertainty: ", i_unc) print("Text uncertainty: ", t_unc) ``` ``` @article{chun2024prolip, title={Probabilistic Language-Image Pre-Training}, author={Chun, Sanghyuk and Kim, Wonjae and Park, Song and Yun, Sangdoo}, journal={arXiv preprint arXiv:2410.18857}, year={2024} } ```