--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERT_ep5_lr5 results: [] --- # BERT_ep5_lr5 This model is a fine-tuned version of [ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT](https://huggingface.co/ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2959 - Precision: 0.6769 - Recall: 0.6346 - F1: 0.6551 - Accuracy: 0.9424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-09 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 467 | 0.3013 | 0.6775 | 0.6310 | 0.6534 | 0.9421 | | 0.2977 | 2.0 | 934 | 0.2985 | 0.6764 | 0.6326 | 0.6538 | 0.9423 | | 0.2958 | 3.0 | 1401 | 0.2967 | 0.6774 | 0.6343 | 0.6551 | 0.9423 | | 0.2906 | 4.0 | 1868 | 0.2960 | 0.6769 | 0.6346 | 0.6551 | 0.9423 | | 0.2833 | 5.0 | 2335 | 0.2959 | 0.6769 | 0.6346 | 0.6551 | 0.9424 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3