update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: BERT_ep8_lr2
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# BERT_ep8_lr2
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT](https://huggingface.co/ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0940
|
23 |
+
- Precision: 0.8489
|
24 |
+
- Recall: 0.8716
|
25 |
+
- F1: 0.8601
|
26 |
+
- Accuracy: 0.9771
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-06
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 8
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 467 | 0.0850 | 0.8142 | 0.8377 | 0.8257 | 0.9730 |
|
58 |
+
| 0.1137 | 2.0 | 934 | 0.0799 | 0.8402 | 0.8534 | 0.8467 | 0.9757 |
|
59 |
+
| 0.0746 | 3.0 | 1401 | 0.0825 | 0.8416 | 0.8614 | 0.8514 | 0.9765 |
|
60 |
+
| 0.0588 | 4.0 | 1868 | 0.0863 | 0.8560 | 0.8652 | 0.8606 | 0.9769 |
|
61 |
+
| 0.0482 | 5.0 | 2335 | 0.0885 | 0.8553 | 0.8646 | 0.8599 | 0.9771 |
|
62 |
+
| 0.0402 | 6.0 | 2802 | 0.0893 | 0.8520 | 0.8668 | 0.8593 | 0.9776 |
|
63 |
+
| 0.0362 | 7.0 | 3269 | 0.0916 | 0.8480 | 0.8726 | 0.8601 | 0.9772 |
|
64 |
+
| 0.0336 | 8.0 | 3736 | 0.0940 | 0.8489 | 0.8716 | 0.8601 | 0.9771 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.27.4
|
70 |
+
- Pytorch 2.0.0+cu118
|
71 |
+
- Datasets 2.11.0
|
72 |
+
- Tokenizers 0.13.3
|