Sarveshj commited on
Commit
ab5e3ab
·
1 Parent(s): 99c486b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: BERT_ep8_lr2
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # BERT_ep8_lr2
19
+
20
+ This model is a fine-tuned version of [ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT](https://huggingface.co/ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0940
23
+ - Precision: 0.8489
24
+ - Recall: 0.8716
25
+ - F1: 0.8601
26
+ - Accuracy: 0.9771
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-06
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 8
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0 | 467 | 0.0850 | 0.8142 | 0.8377 | 0.8257 | 0.9730 |
58
+ | 0.1137 | 2.0 | 934 | 0.0799 | 0.8402 | 0.8534 | 0.8467 | 0.9757 |
59
+ | 0.0746 | 3.0 | 1401 | 0.0825 | 0.8416 | 0.8614 | 0.8514 | 0.9765 |
60
+ | 0.0588 | 4.0 | 1868 | 0.0863 | 0.8560 | 0.8652 | 0.8606 | 0.9769 |
61
+ | 0.0482 | 5.0 | 2335 | 0.0885 | 0.8553 | 0.8646 | 0.8599 | 0.9771 |
62
+ | 0.0402 | 6.0 | 2802 | 0.0893 | 0.8520 | 0.8668 | 0.8593 | 0.9776 |
63
+ | 0.0362 | 7.0 | 3269 | 0.0916 | 0.8480 | 0.8726 | 0.8601 | 0.9772 |
64
+ | 0.0336 | 8.0 | 3736 | 0.0940 | 0.8489 | 0.8716 | 0.8601 | 0.9771 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.27.4
70
+ - Pytorch 2.0.0+cu118
71
+ - Datasets 2.11.0
72
+ - Tokenizers 0.13.3