--- tags: - text-generation-inference - text-generation library_name: transformers base_model: Qwen/Qwen2.5-Coder-0.5B-Instruct widget: - messages: - role: user content: generate silvaco code license: other datasets: - SarwarShafee/Silvaco-Code-3k --- # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() prompt = "write a silvaco code for cylindical gate junctionless mosfet designing." messages = [ {"role": "system", "content": "You are a Silvaco code generator. When given a task, produce only the Silvaco code snippet that fulfills the requirements. Do not include any explanations, comments, or additional textonly the raw, executable Silvaco code."}, {"role": "user", "content": prompt} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) print(response) ```