Satwik11 commited on
Commit
ac1d5ed
·
verified ·
1 Parent(s): 886f33d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -124
README.md CHANGED
@@ -11,7 +11,6 @@ pipeline_tag: translation
11
 
12
  # Model Card for Model ID
13
 
14
- <!-- Provide a quick summary of what the model is/does. -->
15
 
16
 
17
 
@@ -19,8 +18,6 @@ pipeline_tag: translation
19
 
20
  ### Model Description
21
 
22
- <!-- Provide a longer summary of what this model is. -->
23
-
24
  This model is a fine-tuned version of the GEMMA 2B multilingual transformer, specifically optimized for translating text from English to Hindi. It leverages the capabilities of the original GEMMA architecture to provide accurate and efficient translations.
25
 
26
  Model Name: Gemma-2b-mt-Hindi-Fintuned
@@ -31,11 +28,6 @@ Framework: Transformers
31
 
32
  ### Model Sources [optional]
33
 
34
- <!-- Provide the basic links for the model. -->
35
-
36
- - **Repository:** [More Information Needed]
37
- - **Paper [optional]:** [More Information Needed]
38
- - **Demo [optional]:** [More Information Needed]
39
 
40
  ## Uses
41
 
@@ -58,10 +50,6 @@ The model can be integrated into larger systems or applications that require Eng
58
 
59
  ### Out-of-Scope Use
60
 
61
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
-
63
- [More Information Needed]
64
-
65
  ## Bias, Risks, and Limitations
66
 
67
  -The model may struggle with idiomatic expressions or culturally specific content.
@@ -76,129 +64,45 @@ The model can be integrated into larger systems or applications that require Eng
76
 
77
  ## How to Get Started with the Model
78
 
79
- Use the code below to get started with the model.
80
-
81
- [More Information Needed]
82
-
83
- ## Training Details
84
-
85
- ### Training Data
86
-
87
- The model was fine-tuned on the cfilt/iitb-english-hindi dataset, which contains English-Hindi sentence pairs. For more details about the dataset, refer to the dataset card on Hugging Face.
88
-
89
- ### Training Procedure
90
-
91
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
-
93
- #### Preprocessing [optional]
94
-
95
- [More Information Needed]
96
-
97
-
98
- #### Training Hyperparameters
99
 
100
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
 
102
- #### Speeds, Sizes, Times [optional]
 
 
103
 
104
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
 
 
 
 
 
 
 
 
105
 
106
- [More Information Needed]
107
-
108
- ## Evaluation
109
-
110
- <!-- This section describes the evaluation protocols and provides the results. -->
111
-
112
- ### Testing Data, Factors & Metrics
113
-
114
- #### Testing Data
115
-
116
- <!-- This should link to a Dataset Card if possible. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Factors
121
-
122
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
-
124
- [More Information Needed]
125
-
126
- #### Metrics
127
-
128
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
-
130
- [More Information Needed]
131
-
132
- ### Results
133
-
134
- [More Information Needed]
135
 
136
- #### Summary
 
 
 
137
 
138
 
 
139
 
140
- ## Model Examination [optional]
141
-
142
- <!-- Relevant interpretability work for the model goes here -->
143
-
144
- [More Information Needed]
145
-
146
- ## Environmental Impact
147
-
148
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
-
150
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
-
152
- - **Hardware Type:** [More Information Needed]
153
- - **Hours used:** [More Information Needed]
154
- - **Cloud Provider:** [More Information Needed]
155
- - **Compute Region:** [More Information Needed]
156
- - **Carbon Emitted:** [More Information Needed]
157
-
158
- ## Technical Specifications [optional]
159
-
160
- ### Model Architecture and Objective
161
-
162
- [More Information Needed]
163
-
164
- ### Compute Infrastructure
165
-
166
- [More Information Needed]
167
-
168
- #### Hardware
169
-
170
- [More Information Needed]
171
-
172
- #### Software
173
-
174
- [More Information Needed]
175
-
176
- ## Citation [optional]
177
-
178
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
-
180
- **BibTeX:**
181
-
182
- [More Information Needed]
183
-
184
- **APA:**
185
-
186
- [More Information Needed]
187
-
188
- ## Glossary [optional]
189
-
190
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
-
192
- [More Information Needed]
193
-
194
- ## More Information [optional]
195
 
196
- [More Information Needed]
197
 
198
- ## Model Card Authors [optional]
199
 
200
- [More Information Needed]
201
 
202
  ## Model Card Contact
203
 
204
- [More Information Needed]
 
11
 
12
  # Model Card for Model ID
13
 
 
14
 
15
 
16
 
 
18
 
19
  ### Model Description
20
 
 
 
21
  This model is a fine-tuned version of the GEMMA 2B multilingual transformer, specifically optimized for translating text from English to Hindi. It leverages the capabilities of the original GEMMA architecture to provide accurate and efficient translations.
22
 
23
  Model Name: Gemma-2b-mt-Hindi-Fintuned
 
28
 
29
  ### Model Sources [optional]
30
 
 
 
 
 
 
31
 
32
  ## Uses
33
 
 
50
 
51
  ### Out-of-Scope Use
52
 
 
 
 
 
53
  ## Bias, Risks, and Limitations
54
 
55
  -The model may struggle with idiomatic expressions or culturally specific content.
 
64
 
65
  ## How to Get Started with the Model
66
 
67
+ Use the code below to get started with the model:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
+ from transformers import AutoTokenizer, AutoModelForCausalLM
70
 
71
+ # Load the model and tokenizer
72
+ tokenizer = AutoTokenizer.from_pretrained("Satwik11/gemma-2b-mt-Hindi-Fintuned")
73
+ model = AutoModelForCausalLM.from_pretrained("Satwik11/gemma-2b-mt-Hindi-Fintuned")
74
 
75
+ def generate_translation(prompt, max_length=90):
76
+ # Prepare the input
77
+ inputs = tokenizer(prompt, return_tensors='pt')
78
+
79
+ # Generate the translation
80
+ outputs = model.generate(**inputs, max_length=max_length)
81
+
82
+ # Decode the generated output
83
+ translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
84
+
85
+ return translated_text
86
 
87
+ # Test the model with some example sentences
88
+ test_sentences = [
89
+ "Today is August 19.The maximum temperature is 70 degrees Fahrenheit"
90
+ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
+ for sentence in test_sentences:
93
+ prompt = f"Translate the following English text to Hindi: {sentence}"
94
+ translation = generate_translation(prompt)
95
+ print(translation)
96
 
97
 
98
+ ## Training Details
99
 
100
+ ### Training Data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
 
102
+ The model was fine-tuned on the cfilt/iitb-english-hindi dataset, which contains English-Hindi sentence pairs. For more details about the dataset, refer to the dataset card on Hugging Face.
103
 
 
104
 
 
105
 
106
  ## Model Card Contact
107
 
108
+ For more information, please contact the model creators through the Hugging Face model repository: https://www.linkedin.com/in/satwik-sinha/