SaudxInu commited on
Commit
e62bc71
·
1 Parent(s): 7f4402e

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbd1dba411f9f1ba7d11f126ff25d7c0f59692c4252571bcd2080ac779d820f9
3
+ size 122923
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a6ed15e68c0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7a6ed15de4c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1692287256720627057,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAf1kav4U7fb/V2CU+mHvrPhs1Gb+b2SU+2qvHPotn4b2S1iU+iDtHv9QdkL/82SU+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuBGFP6OWCL9Y/2e/5nmuP0Jltb990Z8/dMoTv1KN0b9r/o0/2JrbPRDYZb9a9Lg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABHaXA+nwPKvG4x4T9fAoM/CQadv/URMD9oo1K/f1kav4U7fb/V2CU+E4ciPK0EoDxTOFi8WElkPUI+Kr0u4JI9NZiCPAZumLyfLsm8xx55P5j+nL46OGi/a4loPjLKTj8wtjE9LqNSv5h76z4bNRm/m9klPn7OIDw02p88cu9cvNjDYz2YYyi9HeCSPYCXgjwnbZi87FbKvOuCgD9uV/K9RxRnv9MZAz6O1VI/X/w8PW+iUr/aq8c+i2fhvZLWJT5wTyQ8Q7OfPDfzYbz8j2I9IkEpvS7gkj0rmII8/G2YvBy3zLywMn4/xGQ6PvvbvLzub9o+5jkQv/WFhD8HqA2/iDtHv9QdkL/82SU+9zsiPBGNnzzTC1e8al5iPdPFJ72Pk5I9BqNqPJ2ooLwW08u8lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[-0.6029281 -0.98918945 0.16195996]\n [ 0.45992732 -0.5984666 0.16196291]\n [ 0.389983 -0.11006077 0.16195133]\n [-0.7782521 -1.1259103 0.16196436]]",
34
+ "desired_goal": "[[ 1.0396032 -0.53354853 -0.90624 ]\n [ 1.363095 -1.4171526 1.2485806 ]\n [-0.57730794 -1.6371253 1.1093267 ]\n [ 0.10722893 -0.8978281 1.444957 ]]",
35
+ "observation": "[[ 0.2347766 -0.02465993 1.759321 1.0235099 -1.2267467 0.687774\n -0.8228059 -0.6029281 -0.98918945 0.16195996 0.0099199 0.01953348\n -0.01319702 0.05573401 -0.04156328 0.07171665 0.01594172 -0.01860715\n -0.02455836]\n [ 0.9731259 -0.3066299 -0.90710795 0.22708671 0.80777276 0.04338664\n -0.8228024 0.45992732 -0.5984666 0.16196291 0.00981486 0.01951323\n -0.01348482 0.05560669 -0.04111061 0.07171652 0.01594138 -0.01860674\n -0.02469965]\n [ 1.0039953 -0.11833082 -0.90265316 0.1280282 0.8235711 0.04613912\n -0.82279104 0.389983 -0.11006077 0.16195133 0.01002871 0.01949466\n -0.0137909 0.0553131 -0.04132188 0.07171665 0.0159417 -0.01860713\n -0.02498966]\n [ 0.99296093 0.18202502 -0.02305411 0.4266352 -0.56338346 1.035338\n -0.55334514 -0.7782521 -1.1259103 0.16196436 0.00990199 0.01947645\n -0.01312538 0.05526582 -0.04096014 0.07157051 0.01432109 -0.01961165\n -0.02488093]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAboyvvZWb6T0K16M8N6sOvsUd5L0K16M8r5QjvT4A2b0K16M8UUqtPfU2Hb0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGAAjvUsXYL0K16M80wqyPLjrZz3AGyg+PKlfPHny3TwK16M8Z+9hvec66rwrqVk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAboyvvZWb6T0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAADerDr7FHeS9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACvlCO9PgDZvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAUUqtPfU2Hb0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[-0.08571707 0.11406628 0.02 ]\n [-0.13932501 -0.11138491 0.02 ]\n [-0.03993672 -0.10595749 0.02 ]\n [ 0.0846144 -0.03838249 0.02 ]]",
45
+ "desired_goal": "[[-0.03979501 -0.05470971 0.02 ]\n [ 0.02173368 0.05662128 0.16416836]\n [ 0.01365119 0.02709316 0.02 ]\n [-0.05515995 -0.02859254 0.21255939]]",
46
+ "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -8.57170671e-02\n 1.14066280e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -1.39325008e-01\n -1.11384906e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -3.99367176e-02\n -1.05957493e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 8.46144035e-02\n -3.83824892e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CsWuyo4uK5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsWuA/s3Q2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsXMYx+KCQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsXWG2sq8UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsXT7IT4+KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsXSvk7wKCdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsXTsfA9FGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsXnD7hvR7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsXwZAyEcsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsXtJQ+EAYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsXpoCEHt4dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsXqBC2MKkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsX+i8OCoTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYIDQZ4wAdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsYIqLKmsOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYFKJVKf4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYDTYmLLqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYU+SbH6udX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYeb/4qPPdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsYeznied1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYa1QAMlUdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsYfQgkka/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYXbpeNT+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYnpj2BatdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYthqKxcFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYx5Pdl/ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYqo7vG6xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsY8Ls8gZCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZCOndfsvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZGoIv8IidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsY/no5ggHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZSoK2KEWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZYsKLKmsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZdIs7MgVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZWLWy1NQdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsZWnMUypJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZpPfCQ9zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZvjUmUnpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZ0ANXo1UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZtJwKjSHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZ9YKpkwwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsaDQF1SwXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsaHmuTzNEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsaAUOd5IIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsaUP+4smOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsaaqIznA7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsafKcd5prdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsaYoikftAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsaowOFxn4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsauofjjrBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Csay/ViF0xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsarbFS88LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Csa6pbUwztdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsbAuR1X/6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsbFEUsWfsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Csa9hje9BbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsbNYK6WgOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsbTPvjOs1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsbXmetjkNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsbQDmCAc1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsbjIi9qUNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsbpUyP+4tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsbtxYq5LAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsbnSzPa+OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Csb5YGMXJpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Csb/asySFHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CscDxaHKwIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Csb8jgydnTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CscMZTQ3PzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CscSPeYUnHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CscWn4O+ZgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CscPlQuVX4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CscnK9GqgidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CscuG65Gz9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CscyvVurIYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CscxAN5MURdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsdLqk2xY8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsdSlwtJ4CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsdXMGorFwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsdSjwH7gsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsdptJFspHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Csdwet8uzydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Csd1E+gUUPdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsdxMT37DVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsdxGcWj46dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CseNBlMAWBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CseYAyuZCwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CseUGcvugIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CseSpUYKpldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Csen/+bVjJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CseypNKyv+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CseuvqLS/kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Csetcb70nPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsfBkqMFUydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsfL9p7CzkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsfH/vfCQ+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsfFOSwGGEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsfWzx5LRKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsfhYPwuuidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsfdcvugHvdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:893842c133afc7c4e242aa42ca49e0f0144fe29803babfa231ed47a9204b0552
3
+ size 51646
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dba580fee8a9b52cd95e2eb714d3efd8f24647d280d5b1ad29e3c5837bd81d4
3
+ size 52926
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a6ed15e68c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a6ed15de4c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692287256720627057, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAf1kav4U7fb/V2CU+mHvrPhs1Gb+b2SU+2qvHPotn4b2S1iU+iDtHv9QdkL/82SU+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuBGFP6OWCL9Y/2e/5nmuP0Jltb990Z8/dMoTv1KN0b9r/o0/2JrbPRDYZb9a9Lg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABHaXA+nwPKvG4x4T9fAoM/CQadv/URMD9oo1K/f1kav4U7fb/V2CU+E4ciPK0EoDxTOFi8WElkPUI+Kr0u4JI9NZiCPAZumLyfLsm8xx55P5j+nL46OGi/a4loPjLKTj8wtjE9LqNSv5h76z4bNRm/m9klPn7OIDw02p88cu9cvNjDYz2YYyi9HeCSPYCXgjwnbZi87FbKvOuCgD9uV/K9RxRnv9MZAz6O1VI/X/w8PW+iUr/aq8c+i2fhvZLWJT5wTyQ8Q7OfPDfzYbz8j2I9IkEpvS7gkj0rmII8/G2YvBy3zLywMn4/xGQ6PvvbvLzub9o+5jkQv/WFhD8HqA2/iDtHv9QdkL/82SU+9zsiPBGNnzzTC1e8al5iPdPFJ72Pk5I9BqNqPJ2ooLwW08u8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.6029281 -0.98918945 0.16195996]\n [ 0.45992732 -0.5984666 0.16196291]\n [ 0.389983 -0.11006077 0.16195133]\n [-0.7782521 -1.1259103 0.16196436]]", "desired_goal": "[[ 1.0396032 -0.53354853 -0.90624 ]\n [ 1.363095 -1.4171526 1.2485806 ]\n [-0.57730794 -1.6371253 1.1093267 ]\n [ 0.10722893 -0.8978281 1.444957 ]]", "observation": "[[ 0.2347766 -0.02465993 1.759321 1.0235099 -1.2267467 0.687774\n -0.8228059 -0.6029281 -0.98918945 0.16195996 0.0099199 0.01953348\n -0.01319702 0.05573401 -0.04156328 0.07171665 0.01594172 -0.01860715\n -0.02455836]\n [ 0.9731259 -0.3066299 -0.90710795 0.22708671 0.80777276 0.04338664\n -0.8228024 0.45992732 -0.5984666 0.16196291 0.00981486 0.01951323\n -0.01348482 0.05560669 -0.04111061 0.07171652 0.01594138 -0.01860674\n -0.02469965]\n [ 1.0039953 -0.11833082 -0.90265316 0.1280282 0.8235711 0.04613912\n -0.82279104 0.389983 -0.11006077 0.16195133 0.01002871 0.01949466\n -0.0137909 0.0553131 -0.04132188 0.07171665 0.0159417 -0.01860713\n -0.02498966]\n [ 0.99296093 0.18202502 -0.02305411 0.4266352 -0.56338346 1.035338\n -0.55334514 -0.7782521 -1.1259103 0.16196436 0.00990199 0.01947645\n -0.01312538 0.05526582 -0.04096014 0.07157051 0.01432109 -0.01961165\n -0.02488093]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAboyvvZWb6T0K16M8N6sOvsUd5L0K16M8r5QjvT4A2b0K16M8UUqtPfU2Hb0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGAAjvUsXYL0K16M80wqyPLjrZz3AGyg+PKlfPHny3TwK16M8Z+9hvec66rwrqVk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAboyvvZWb6T0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAADerDr7FHeS9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACvlCO9PgDZvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAUUqtPfU2Hb0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.08571707 0.11406628 0.02 ]\n [-0.13932501 -0.11138491 0.02 ]\n [-0.03993672 -0.10595749 0.02 ]\n [ 0.0846144 -0.03838249 0.02 ]]", "desired_goal": "[[-0.03979501 -0.05470971 0.02 ]\n [ 0.02173368 0.05662128 0.16416836]\n [ 0.01365119 0.02709316 0.02 ]\n [-0.05515995 -0.02859254 0.21255939]]", "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -8.57170671e-02\n 1.14066280e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -1.39325008e-01\n -1.11384906e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -3.99367176e-02\n -1.05957493e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 8.46144035e-02\n -3.83824892e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CsWuyo4uK5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsWuA/s3Q2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsXMYx+KCQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsXWG2sq8UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsXT7IT4+KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsXSvk7wKCdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsXTsfA9FGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsXnD7hvR7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsXwZAyEcsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsXtJQ+EAYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsXpoCEHt4dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsXqBC2MKkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsX+i8OCoTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYIDQZ4wAdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsYIqLKmsOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYFKJVKf4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYDTYmLLqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYU+SbH6udX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYeb/4qPPdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsYeznied1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYa1QAMlUdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsYfQgkka/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYXbpeNT+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYnpj2BatdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYthqKxcFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYx5Pdl/ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsYqo7vG6xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsY8Ls8gZCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZCOndfsvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZGoIv8IidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsY/no5ggHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZSoK2KEWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZYsKLKmsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZdIs7MgVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZWLWy1NQdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsZWnMUypJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZpPfCQ9zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZvjUmUnpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZ0ANXo1UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZtJwKjSHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsZ9YKpkwwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsaDQF1SwXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsaHmuTzNEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsaAUOd5IIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsaUP+4smOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsaaqIznA7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsafKcd5prdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsaYoikftAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsaowOFxn4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsauofjjrBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Csay/ViF0xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsarbFS88LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Csa6pbUwztdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsbAuR1X/6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsbFEUsWfsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Csa9hje9BbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsbNYK6WgOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsbTPvjOs1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsbXmetjkNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsbQDmCAc1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsbjIi9qUNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsbpUyP+4tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsbtxYq5LAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsbnSzPa+OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Csb5YGMXJpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Csb/asySFHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CscDxaHKwIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Csb8jgydnTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CscMZTQ3PzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CscSPeYUnHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CscWn4O+ZgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CscPlQuVX4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CscnK9GqgidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CscuG65Gz9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CscyvVurIYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CscxAN5MURdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsdLqk2xY8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsdSlwtJ4CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsdXMGorFwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsdSjwH7gsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsdptJFspHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Csdwet8uzydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Csd1E+gUUPdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsdxMT37DVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsdxGcWj46dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CseNBlMAWBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CseYAyuZCwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CseUGcvugIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CseSpUYKpldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Csen/+bVjJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CseypNKyv+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CseuvqLS/kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Csetcb70nPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsfBkqMFUydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsfL9p7CzkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsfH/vfCQ+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsfFOSwGGEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsfWzx5LRKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsfhYPwuuidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsfdcvugHvdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (814 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-17T16:48:27.721015"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59b0ed22b8c47edda837c8622a4020380bbd59b6c6df36f19679911611e0b36a
3
+ size 3013