Saxo commited on
Commit
3fbabe1
·
verified ·
1 Parent(s): 9be977d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -47
README.md CHANGED
@@ -1,47 +1,64 @@
1
- ---
2
- base_model:
3
- - meta-llama/Meta-Llama-3-8B-Instruct
4
- - MLP-KTLim/llama-3-Korean-Bllossom-8B
5
- library_name: transformers
6
- tags:
7
- - mergekit
8
- - merge
9
-
10
- ---
11
- # Linkbricks-Horizon-AI-Ko-Instruct-8B-base
12
-
13
- This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
14
-
15
- ## Merge Details
16
- ### Merge Method
17
-
18
- This model was merged using the SLERP merge method.
19
-
20
- ### Models Merged
21
-
22
- The following models were included in the merge:
23
- * [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
24
- * [MLP-KTLim/llama-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B)
25
-
26
- ### Configuration
27
-
28
- The following YAML configuration was used to produce this model:
29
-
30
- ```yaml
31
- base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B
32
- dtype: bfloat16
33
- merge_method: slerp
34
- parameters:
35
- t:
36
- - filter: self_attn
37
- value: [0.0, 0.5, 0.3, 0.7, 1.0]
38
- - filter: mlp
39
- value: [1.0, 0.5, 0.7, 0.3, 0.0]
40
- - value: 0.7
41
- slices:
42
- - sources:
43
- - layer_range: [0, 32]
44
- model: MLP-KTLim/llama-3-Korean-Bllossom-8B
45
- - layer_range: [0, 32]
46
- model: meta-llama/Meta-Llama-3-8B-Instruct
47
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ basemodel: meta-llama/Meta-Llama-3-8B-Instruct
5
+ datasets:
6
+ - Saxo/total_ko_train_set_1_with_wiki_with_orca
7
+ language:
8
+ - ko
9
+ - en
10
+ pipeline_tag: text-generation
11
+ ---
12
+
13
+ # Model Card for Model ID
14
+
15
+ <div align="center">
16
+ <img src="https://www.linkbricks.com/wp-content/uploads/2022/03/%E1%84%85%E1%85%B5%E1%86%BC%E1%84%8F%E1%85%B3%E1%84%87%E1%85%B3%E1%84%85%E1%85%B5%E1%86%A8%E1%84%89%E1%85%B3%E1%84%85%E1%85%A9%E1%84%80%E1%85%A9-2-1024x804.png" />
17
+ </div>
18
+
19
+
20
+ AI 빅데이터 분석 전문 기업인 Linkbricks의 데이터사이언티스트인 지윤성 박사(Saxo)가 meta-llama/Meta-Llama-3-8B를 베이스모델로 GCP상의 H100-60G 8개를 통해 SFT-DPO 훈련을 한(8000 Tokens) 모델.
21
+ Accelerate, Deepspeed Zero-3 라이브러리를 사용했으며 Flash Attention 은 Disable 로 설정
22
+
23
+ Dr. Yunsung Ji (Saxo), a data scientist at Linkbricks, a company specializing in AI and big data analytics, trained the meta-llama/Meta-Llama-3-8B base model on 8 H100-60Gs on GCP for 4 hours of instructional training (8000 Tokens).
24
+ Accelerate, Deepspeed Zero-3 libraries were used.
25
+
26
+ www.linkbricks.com, www.linkbricks.vc
27
+
28
+ ## Configuration including BitsandBytes
29
+ ---
30
+ bnb_config = BitsAndBytesConfig(
31
+ load_in_4bit=True,
32
+ bnb_4bit_use_double_quant=False,
33
+ bnb_4bit_quant_type="nf4",
34
+ bnb_4bit_compute_dtype=torch_dtype
35
+ )
36
+
37
+
38
+ args = TrainingArguments(
39
+ output_dir=project_name,
40
+ run_name=run_name_str,
41
+ overwrite_output_dir=True,
42
+ num_train_epochs=20,
43
+ per_device_train_batch_size=1,
44
+ gradient_accumulation_steps=4, #1
45
+ gradient_checkpointing=True,
46
+ optim="paged_adamw_32bit",
47
+ #optim="adamw_8bit",
48
+ logging_steps=10,
49
+ save_steps=100,
50
+ save_strategy="epoch",
51
+ learning_rate=2e-4, #2e-4
52
+ weight_decay=0.01,
53
+ max_grad_norm=1, #0.3
54
+ max_steps=-1,
55
+ warmup_ratio=0.1,
56
+ group_by_length=False,
57
+ fp16 = not torch.cuda.is_bf16_supported(),
58
+ bf16 = torch.cuda.is_bf16_supported(),
59
+ #fp16 = True,
60
+ lr_scheduler_type="cosine", #"constant",
61
+ disable_tqdm=False,
62
+ report_to='wandb',
63
+ push_to_hub=False
64
+ )