Schwarzschild009
commited on
Commit
·
463bef4
1
Parent(s):
02f077d
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.53 +/- 0.65
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb64fd82a718c0792b80741656a67282c3e30edf0e655ba3c33eb7c49ba1efd3
|
3 |
+
size 108118
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9313d7d700>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9313d7e200>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1681756304549506150,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkkDTPlB1NDwl2Ao/kkDTPlB1NDwl2Ao/kkDTPlB1NDwl2Ao/kkDTPlB1NDwl2Ao/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxKbOP/R+Lr+oJ64/cTVZP3Afpr/KS80/bC/avxB61j8O0GO/fpuTv6PoG79JwF8/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACSQNM+UHU0PCXYCj+u4X477fDguZ8H7DuSQNM+UHU0PCXYCj+u4X477fDguZ8H7DuSQNM+UHU0PCXYCj+u4X477fDguZ8H7DuSQNM+UHU0PCXYCj+u4X477fDguZ8H7DuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.412602 0.0110143 0.5423606]\n [0.412602 0.0110143 0.5423606]\n [0.412602 0.0110143 0.5423606]\n [0.412602 0.0110143 0.5423606]]",
|
38 |
+
"desired_goal": "[[ 1.6144643 -0.68162465 1.3605852 ]\n [ 0.8484717 -1.2978344 1.6038754 ]\n [-1.7045722 1.6756 -0.8898934 ]\n [-1.1531827 -0.6090185 0.8740278 ]]",
|
39 |
+
"observation": "[[ 4.1260201e-01 1.1014298e-02 5.4236060e-01 3.8891840e-03\n -4.2904113e-04 7.2030569e-03]\n [ 4.1260201e-01 1.1014298e-02 5.4236060e-01 3.8891840e-03\n -4.2904113e-04 7.2030569e-03]\n [ 4.1260201e-01 1.1014298e-02 5.4236060e-01 3.8891840e-03\n -4.2904113e-04 7.2030569e-03]\n [ 4.1260201e-01 1.1014298e-02 5.4236060e-01 3.8891840e-03\n -4.2904113e-04 7.2030569e-03]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVOqFOwuqzbwE4QY8VLe/PdjSuTzqpsI9ZRb8vcLjFr59b5c981tovBeVgj2zVHg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.00408677 -0.0251055 0.00823236]\n [ 0.09361139 0.02268355 0.09504493]\n [-0.12308959 -0.1473532 0.07394312]\n [-0.01418208 0.06376093 0.2425106 ]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMII93PKcjP/L+UhpRSlIwBbJRLMowBdJRHQKdAgUJOWSl1fZQoaAZoCWgPQwg+l6lJ8Mb5v5SGlFKUaBVLMmgWR0CnQD/I0ZWJdX2UKGgGaAloD0MIvjCZKhiVB8CUhpRSlGgVSzJoFkdApz/7rcCYC3V9lChoBmgJaA9DCM3NN6J79hDAlIaUUpRoFUsyaBZHQKc/v9cbBGh1fZQoaAZoCWgPQwhwmdNlMTEGwJSGlFKUaBVLMmgWR0CnQZ9UbT+edX2UKGgGaAloD0MI1EfgDz8fEMCUhpRSlGgVSzJoFkdAp0FdjCpFTnV9lChoBmgJaA9DCBnFckurYQfAlIaUUpRoFUsyaBZHQKdBGPRRdhR1fZQoaAZoCWgPQwiz7h8L0aEGwJSGlFKUaBVLMmgWR0CnQNxGlQ/HdX2UKGgGaAloD0MIn67uWGxzCsCUhpRSlGgVSzJoFkdAp0KTEYO2A3V9lChoBmgJaA9DCK9eRUYHRAXAlIaUUpRoFUsyaBZHQKdCUPS2H+J1fZQoaAZoCWgPQwiHokCfyFP8v5SGlFKUaBVLMmgWR0CnQgyMcZLqdX2UKGgGaAloD0MIxmte1VmND8CUhpRSlGgVSzJoFkdAp0HP2GqPwXV9lChoBmgJaA9DCPmdJjPe9grAlIaUUpRoFUsyaBZHQKdDh1q33Ht1fZQoaAZoCWgPQwhDke7nFOT8v5SGlFKUaBVLMmgWR0CnQ0U9QoCudX2UKGgGaAloD0MIc9U8R+SrE8CUhpRSlGgVSzJoFkdAp0MAezUqhHV9lChoBmgJaA9DCAngZvFiIQjAlIaUUpRoFUsyaBZHQKdCw7btZ3d1fZQoaAZoCWgPQwgYQznRrmIPwJSGlFKUaBVLMmgWR0CnRI9l/YrbdX2UKGgGaAloD0MIjgdb7PY5DcCUhpRSlGgVSzJoFkdAp0RNbHIZInV9lChoBmgJaA9DCLE08KMaFg/AlIaUUpRoFUsyaBZHQKdECQuEmIF1fZQoaAZoCWgPQwgj9DP1uqUPwJSGlFKUaBVLMmgWR0CnQ8x9XtBwdX2UKGgGaAloD0MIMC/APjrVDcCUhpRSlGgVSzJoFkdAp0WIu7HyVnV9lChoBmgJaA9DCED5u3fUOADAlIaUUpRoFUsyaBZHQKdFRsGgSOB1fZQoaAZoCWgPQwidEhCTcCEKwJSGlFKUaBVLMmgWR0CnRQIX0oSddX2UKGgGaAloD0MIT+YffZOGEMCUhpRSlGgVSzJoFkdAp0TFWluWKXV9lChoBmgJaA9DCFRVaCCWDQnAlIaUUpRoFUsyaBZHQKdGeTHKfWd1fZQoaAZoCWgPQwhp5V5gVggIwJSGlFKUaBVLMmgWR0CnRjcaOxSpdX2UKGgGaAloD0MIP+PCgZDMCcCUhpRSlGgVSzJoFkdAp0XyWeHzpXV9lChoBmgJaA9DCENyMnGrIAPAlIaUUpRoFUsyaBZHQKdFtaDf3vh1fZQoaAZoCWgPQwgS2JyDZwIOwJSGlFKUaBVLMmgWR0CnR1845tFbdX2UKGgGaAloD0MIhGVs6GbfEcCUhpRSlGgVSzJoFkdAp0cdOTJQtXV9lChoBmgJaA9DCMQnnUgwlQHAlIaUUpRoFUsyaBZHQKdG2JBPbfx1fZQoaAZoCWgPQwhxOslWl7MRwJSGlFKUaBVLMmgWR0CnRpvWpZOjdX2UKGgGaAloD0MIVYZxN4iWA8CUhpRSlGgVSzJoFkdAp0hO5z5oG3V9lChoBmgJaA9DCOSiWkQUcwrAlIaUUpRoFUsyaBZHQKdIDND+irV1fZQoaAZoCWgPQwjlYgys47gLwJSGlFKUaBVLMmgWR0CnR8hGhEjPdX2UKGgGaAloD0MI3EduTbrNBcCUhpRSlGgVSzJoFkdAp0eLjWCmM3V9lChoBmgJaA9DCPJdSl0yDgLAlIaUUpRoFUsyaBZHQKdJNR/mT1V1fZQoaAZoCWgPQwiAYmTJHGsRwJSGlFKUaBVLMmgWR0CnSPL9VFQVdX2UKGgGaAloD0MI7u4Bui/XEcCUhpRSlGgVSzJoFkdAp0iuNrCWNXV9lChoBmgJaA9DCAuZK4NqQwrAlIaUUpRoFUsyaBZHQKdIcVlf7aZ1fZQoaAZoCWgPQwgAxF29igwLwJSGlFKUaBVLMmgWR0CnShrIgeRxdX2UKGgGaAloD0MIOq5GdqUFC8CUhpRSlGgVSzJoFkdAp0nYnOSntXV9lChoBmgJaA9DCOo/a378hQ/AlIaUUpRoFUsyaBZHQKdJk9aEBbR1fZQoaAZoCWgPQwhv88ZJYd4CwJSGlFKUaBVLMmgWR0CnSVcHfMwDdX2UKGgGaAloD0MIBOPg0jHnAcCUhpRSlGgVSzJoFkdAp0sAF/x2CHV9lChoBmgJaA9DCMlWl1MCIg7AlIaUUpRoFUsyaBZHQKdKvfnfVI91fZQoaAZoCWgPQwhbsirCTUYMwJSGlFKUaBVLMmgWR0CnSnlBQemvdX2UKGgGaAloD0MId9Zuu9CcAcCUhpRSlGgVSzJoFkdAp0o8gKWszXV9lChoBmgJaA9DCGdD/plBnALAlIaUUpRoFUsyaBZHQKdL6eYD1Xh1fZQoaAZoCWgPQwiFQ2/x8J4IwJSGlFKUaBVLMmgWR0CnS6fL9uP4dX2UKGgGaAloD0MIMZqV7UM+B8CUhpRSlGgVSzJoFkdAp0tjQJHAh3V9lChoBmgJaA9DCI3w9iAEpAfAlIaUUpRoFUsyaBZHQKdLJpQDV6N1fZQoaAZoCWgPQwgoC19f65IHwJSGlFKUaBVLMmgWR0CnTNKoAGSqdX2UKGgGaAloD0MIb0Vigho+AcCUhpRSlGgVSzJoFkdAp0yQnjQzDXV9lChoBmgJaA9DCDnv/+OESQ/AlIaUUpRoFUsyaBZHQKdMS/LTx5N1fZQoaAZoCWgPQwhE3JxKBgABwJSGlFKUaBVLMmgWR0CnTA8p9ZzQdX2UKGgGaAloD0MI2/y/6sgBEcCUhpRSlGgVSzJoFkdAp03HqC6H03V9lChoBmgJaA9DCHkhHR7CWAPAlIaUUpRoFUsyaBZHQKdNhcLSeAd1fZQoaAZoCWgPQwhkQPZ698cSwJSGlFKUaBVLMmgWR0CnTUEovzvrdX2UKGgGaAloD0MIc7wC0ZMyDMCUhpRSlGgVSzJoFkdAp00EgbIcR3V9lChoBmgJaA9DCDvl0Y2w6A7AlIaUUpRoFUsyaBZHQKdOvAP/aQF1fZQoaAZoCWgPQwig/rPmx98TwJSGlFKUaBVLMmgWR0CnTnrAYYR/dX2UKGgGaAloD0MIonxBCwnYB8CUhpRSlGgVSzJoFkdAp042AmReTnV9lChoBmgJaA9DCHqPM03YXgXAlIaUUpRoFUsyaBZHQKdN+UdJaq11fZQoaAZoCWgPQwgtl43O+WkGwJSGlFKUaBVLMmgWR0CnT6hQvYe1dX2UKGgGaAloD0MIkC3L12WoEcCUhpRSlGgVSzJoFkdAp09mLLpzLnV9lChoBmgJaA9DCMB1xYzwtgvAlIaUUpRoFUsyaBZHQKdPIYZ2pyZ1fZQoaAZoCWgPQwhLOsrBbKIDwJSGlFKUaBVLMmgWR0CnTuTpgTh6dX2UKGgGaAloD0MIby7+tieoA8CUhpRSlGgVSzJoFkdAp1CH1pTMq3V9lChoBmgJaA9DCBniWBe38QPAlIaUUpRoFUsyaBZHQKdQRb/wRXh1fZQoaAZoCWgPQwjSxDvAkzYIwJSGlFKUaBVLMmgWR0CnUADye7L/dX2UKGgGaAloD0MI7X+AtWq3C8CUhpRSlGgVSzJoFkdAp0/EH8jzI3V9lChoBmgJaA9DCN45lKEq5grAlIaUUpRoFUsyaBZHQKdRboUSIxh1fZQoaAZoCWgPQwi2TfG4qNb9v5SGlFKUaBVLMmgWR0CnUSxn3+MqdX2UKGgGaAloD0MIvOmWHeIPE8CUhpRSlGgVSzJoFkdAp1Dnyy2QXHV9lChoBmgJaA9DCEpCIm3jrwDAlIaUUpRoFUsyaBZHQKdQqw7DEWJ1fZQoaAZoCWgPQwhJnuv7cHAMwJSGlFKUaBVLMmgWR0CnUk9h7VridX2UKGgGaAloD0MIW+1hLxSgEMCUhpRSlGgVSzJoFkdAp1INNvfj0nV9lChoBmgJaA9DCGTo2EElLg3AlIaUUpRoFUsyaBZHQKdRyG5c1O11fZQoaAZoCWgPQwiTb7a5Md0IwJSGlFKUaBVLMmgWR0CnUYubiIcjdX2UKGgGaAloD0MI6s9+pIhM/7+UhpRSlGgVSzJoFkdAp1NBwuM+/3V9lChoBmgJaA9DCDbknxnEJwTAlIaUUpRoFUsyaBZHQKdS/6N2ki51fZQoaAZoCWgPQwisyOiAJEwQwJSGlFKUaBVLMmgWR0CnUrskpqh2dX2UKGgGaAloD0MIpwaaz7l7BMCUhpRSlGgVSzJoFkdAp1J+criEQHV9lChoBmgJaA9DCDMYIxKF5hLAlIaUUpRoFUsyaBZHQKdUOijcmBx1fZQoaAZoCWgPQwhEb/HwnlMRwJSGlFKUaBVLMmgWR0CnU/hPbfxddX2UKGgGaAloD0MIDw72JoZEDcCUhpRSlGgVSzJoFkdAp1OzsyBTXXV9lChoBmgJaA9DCFYsflNYCQvAlIaUUpRoFUsyaBZHQKdTd0NjLB91fZQoaAZoCWgPQwgs81Zdh2oKwJSGlFKUaBVLMmgWR0CnVVqc/dIodX2UKGgGaAloD0MIcjPcgM8vCMCUhpRSlGgVSzJoFkdAp1UZG6PKdXV9lChoBmgJaA9DCN2YnrDEYwvAlIaUUpRoFUsyaBZHQKdU1YDklu51fZQoaAZoCWgPQwhbBpylZDn7v5SGlFKUaBVLMmgWR0CnVJk1VHWjdX2UKGgGaAloD0MIE0n0MorFA8CUhpRSlGgVSzJoFkdAp1bTDZUT+XV9lChoBmgJaA9DCCRGzy10RQPAlIaUUpRoFUsyaBZHQKdWkdtEXtV1fZQoaAZoCWgPQwhGlWHcDcIBwJSGlFKUaBVLMmgWR0CnVk3t0FKTdX2UKGgGaAloD0MIRmCsb2DyEMCUhpRSlGgVSzJoFkdAp1YSiblRxnV9lChoBmgJaA9DCJViR+NQPwfAlIaUUpRoFUsyaBZHQKdYY4p+c6N1fZQoaAZoCWgPQwhNwK+RJKgGwJSGlFKUaBVLMmgWR0CnWCKNQ0oCdX2UKGgGaAloD0MIZRu4A3W6EMCUhpRSlGgVSzJoFkdAp1ffD+BH1HV9lChoBmgJaA9DCNek2xK5YAzAlIaUUpRoFUsyaBZHQKdXowhW5pd1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16279ca91ca4b9671b899759f1c21ee133c8a3df710b064fc33226da4e91cfa1
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:079212a052f86a3c1db39d7e83a5fa57b4b1db0724edaf32bb01d669e3d9f556
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9313d7d700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9313d7e200>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681756304549506150, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkkDTPlB1NDwl2Ao/kkDTPlB1NDwl2Ao/kkDTPlB1NDwl2Ao/kkDTPlB1NDwl2Ao/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxKbOP/R+Lr+oJ64/cTVZP3Afpr/KS80/bC/avxB61j8O0GO/fpuTv6PoG79JwF8/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACSQNM+UHU0PCXYCj+u4X477fDguZ8H7DuSQNM+UHU0PCXYCj+u4X477fDguZ8H7DuSQNM+UHU0PCXYCj+u4X477fDguZ8H7DuSQNM+UHU0PCXYCj+u4X477fDguZ8H7DuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.412602 0.0110143 0.5423606]\n [0.412602 0.0110143 0.5423606]\n [0.412602 0.0110143 0.5423606]\n [0.412602 0.0110143 0.5423606]]", "desired_goal": "[[ 1.6144643 -0.68162465 1.3605852 ]\n [ 0.8484717 -1.2978344 1.6038754 ]\n [-1.7045722 1.6756 -0.8898934 ]\n [-1.1531827 -0.6090185 0.8740278 ]]", "observation": "[[ 4.1260201e-01 1.1014298e-02 5.4236060e-01 3.8891840e-03\n -4.2904113e-04 7.2030569e-03]\n [ 4.1260201e-01 1.1014298e-02 5.4236060e-01 3.8891840e-03\n -4.2904113e-04 7.2030569e-03]\n [ 4.1260201e-01 1.1014298e-02 5.4236060e-01 3.8891840e-03\n -4.2904113e-04 7.2030569e-03]\n [ 4.1260201e-01 1.1014298e-02 5.4236060e-01 3.8891840e-03\n -4.2904113e-04 7.2030569e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVOqFOwuqzbwE4QY8VLe/PdjSuTzqpsI9ZRb8vcLjFr59b5c981tovBeVgj2zVHg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00408677 -0.0251055 0.00823236]\n [ 0.09361139 0.02268355 0.09504493]\n [-0.12308959 -0.1473532 0.07394312]\n [-0.01418208 0.06376093 0.2425106 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMII93PKcjP/L+UhpRSlIwBbJRLMowBdJRHQKdAgUJOWSl1fZQoaAZoCWgPQwg+l6lJ8Mb5v5SGlFKUaBVLMmgWR0CnQD/I0ZWJdX2UKGgGaAloD0MIvjCZKhiVB8CUhpRSlGgVSzJoFkdApz/7rcCYC3V9lChoBmgJaA9DCM3NN6J79hDAlIaUUpRoFUsyaBZHQKc/v9cbBGh1fZQoaAZoCWgPQwhwmdNlMTEGwJSGlFKUaBVLMmgWR0CnQZ9UbT+edX2UKGgGaAloD0MI1EfgDz8fEMCUhpRSlGgVSzJoFkdAp0FdjCpFTnV9lChoBmgJaA9DCBnFckurYQfAlIaUUpRoFUsyaBZHQKdBGPRRdhR1fZQoaAZoCWgPQwiz7h8L0aEGwJSGlFKUaBVLMmgWR0CnQNxGlQ/HdX2UKGgGaAloD0MIn67uWGxzCsCUhpRSlGgVSzJoFkdAp0KTEYO2A3V9lChoBmgJaA9DCK9eRUYHRAXAlIaUUpRoFUsyaBZHQKdCUPS2H+J1fZQoaAZoCWgPQwiHokCfyFP8v5SGlFKUaBVLMmgWR0CnQgyMcZLqdX2UKGgGaAloD0MIxmte1VmND8CUhpRSlGgVSzJoFkdAp0HP2GqPwXV9lChoBmgJaA9DCPmdJjPe9grAlIaUUpRoFUsyaBZHQKdDh1q33Ht1fZQoaAZoCWgPQwhDke7nFOT8v5SGlFKUaBVLMmgWR0CnQ0U9QoCudX2UKGgGaAloD0MIc9U8R+SrE8CUhpRSlGgVSzJoFkdAp0MAezUqhHV9lChoBmgJaA9DCAngZvFiIQjAlIaUUpRoFUsyaBZHQKdCw7btZ3d1fZQoaAZoCWgPQwgYQznRrmIPwJSGlFKUaBVLMmgWR0CnRI9l/YrbdX2UKGgGaAloD0MIjgdb7PY5DcCUhpRSlGgVSzJoFkdAp0RNbHIZInV9lChoBmgJaA9DCLE08KMaFg/AlIaUUpRoFUsyaBZHQKdECQuEmIF1fZQoaAZoCWgPQwgj9DP1uqUPwJSGlFKUaBVLMmgWR0CnQ8x9XtBwdX2UKGgGaAloD0MIMC/APjrVDcCUhpRSlGgVSzJoFkdAp0WIu7HyVnV9lChoBmgJaA9DCED5u3fUOADAlIaUUpRoFUsyaBZHQKdFRsGgSOB1fZQoaAZoCWgPQwidEhCTcCEKwJSGlFKUaBVLMmgWR0CnRQIX0oSddX2UKGgGaAloD0MIT+YffZOGEMCUhpRSlGgVSzJoFkdAp0TFWluWKXV9lChoBmgJaA9DCFRVaCCWDQnAlIaUUpRoFUsyaBZHQKdGeTHKfWd1fZQoaAZoCWgPQwhp5V5gVggIwJSGlFKUaBVLMmgWR0CnRjcaOxSpdX2UKGgGaAloD0MIP+PCgZDMCcCUhpRSlGgVSzJoFkdAp0XyWeHzpXV9lChoBmgJaA9DCENyMnGrIAPAlIaUUpRoFUsyaBZHQKdFtaDf3vh1fZQoaAZoCWgPQwgS2JyDZwIOwJSGlFKUaBVLMmgWR0CnR1845tFbdX2UKGgGaAloD0MIhGVs6GbfEcCUhpRSlGgVSzJoFkdAp0cdOTJQtXV9lChoBmgJaA9DCMQnnUgwlQHAlIaUUpRoFUsyaBZHQKdG2JBPbfx1fZQoaAZoCWgPQwhxOslWl7MRwJSGlFKUaBVLMmgWR0CnRpvWpZOjdX2UKGgGaAloD0MIVYZxN4iWA8CUhpRSlGgVSzJoFkdAp0hO5z5oG3V9lChoBmgJaA9DCOSiWkQUcwrAlIaUUpRoFUsyaBZHQKdIDND+irV1fZQoaAZoCWgPQwjlYgys47gLwJSGlFKUaBVLMmgWR0CnR8hGhEjPdX2UKGgGaAloD0MI3EduTbrNBcCUhpRSlGgVSzJoFkdAp0eLjWCmM3V9lChoBmgJaA9DCPJdSl0yDgLAlIaUUpRoFUsyaBZHQKdJNR/mT1V1fZQoaAZoCWgPQwiAYmTJHGsRwJSGlFKUaBVLMmgWR0CnSPL9VFQVdX2UKGgGaAloD0MI7u4Bui/XEcCUhpRSlGgVSzJoFkdAp0iuNrCWNXV9lChoBmgJaA9DCAuZK4NqQwrAlIaUUpRoFUsyaBZHQKdIcVlf7aZ1fZQoaAZoCWgPQwgAxF29igwLwJSGlFKUaBVLMmgWR0CnShrIgeRxdX2UKGgGaAloD0MIOq5GdqUFC8CUhpRSlGgVSzJoFkdAp0nYnOSntXV9lChoBmgJaA9DCOo/a378hQ/AlIaUUpRoFUsyaBZHQKdJk9aEBbR1fZQoaAZoCWgPQwhv88ZJYd4CwJSGlFKUaBVLMmgWR0CnSVcHfMwDdX2UKGgGaAloD0MIBOPg0jHnAcCUhpRSlGgVSzJoFkdAp0sAF/x2CHV9lChoBmgJaA9DCMlWl1MCIg7AlIaUUpRoFUsyaBZHQKdKvfnfVI91fZQoaAZoCWgPQwhbsirCTUYMwJSGlFKUaBVLMmgWR0CnSnlBQemvdX2UKGgGaAloD0MId9Zuu9CcAcCUhpRSlGgVSzJoFkdAp0o8gKWszXV9lChoBmgJaA9DCGdD/plBnALAlIaUUpRoFUsyaBZHQKdL6eYD1Xh1fZQoaAZoCWgPQwiFQ2/x8J4IwJSGlFKUaBVLMmgWR0CnS6fL9uP4dX2UKGgGaAloD0MIMZqV7UM+B8CUhpRSlGgVSzJoFkdAp0tjQJHAh3V9lChoBmgJaA9DCI3w9iAEpAfAlIaUUpRoFUsyaBZHQKdLJpQDV6N1fZQoaAZoCWgPQwgoC19f65IHwJSGlFKUaBVLMmgWR0CnTNKoAGSqdX2UKGgGaAloD0MIb0Vigho+AcCUhpRSlGgVSzJoFkdAp0yQnjQzDXV9lChoBmgJaA9DCDnv/+OESQ/AlIaUUpRoFUsyaBZHQKdMS/LTx5N1fZQoaAZoCWgPQwhE3JxKBgABwJSGlFKUaBVLMmgWR0CnTA8p9ZzQdX2UKGgGaAloD0MI2/y/6sgBEcCUhpRSlGgVSzJoFkdAp03HqC6H03V9lChoBmgJaA9DCHkhHR7CWAPAlIaUUpRoFUsyaBZHQKdNhcLSeAd1fZQoaAZoCWgPQwhkQPZ698cSwJSGlFKUaBVLMmgWR0CnTUEovzvrdX2UKGgGaAloD0MIc7wC0ZMyDMCUhpRSlGgVSzJoFkdAp00EgbIcR3V9lChoBmgJaA9DCDvl0Y2w6A7AlIaUUpRoFUsyaBZHQKdOvAP/aQF1fZQoaAZoCWgPQwig/rPmx98TwJSGlFKUaBVLMmgWR0CnTnrAYYR/dX2UKGgGaAloD0MIonxBCwnYB8CUhpRSlGgVSzJoFkdAp042AmReTnV9lChoBmgJaA9DCHqPM03YXgXAlIaUUpRoFUsyaBZHQKdN+UdJaq11fZQoaAZoCWgPQwgtl43O+WkGwJSGlFKUaBVLMmgWR0CnT6hQvYe1dX2UKGgGaAloD0MIkC3L12WoEcCUhpRSlGgVSzJoFkdAp09mLLpzLnV9lChoBmgJaA9DCMB1xYzwtgvAlIaUUpRoFUsyaBZHQKdPIYZ2pyZ1fZQoaAZoCWgPQwhLOsrBbKIDwJSGlFKUaBVLMmgWR0CnTuTpgTh6dX2UKGgGaAloD0MIby7+tieoA8CUhpRSlGgVSzJoFkdAp1CH1pTMq3V9lChoBmgJaA9DCBniWBe38QPAlIaUUpRoFUsyaBZHQKdQRb/wRXh1fZQoaAZoCWgPQwjSxDvAkzYIwJSGlFKUaBVLMmgWR0CnUADye7L/dX2UKGgGaAloD0MI7X+AtWq3C8CUhpRSlGgVSzJoFkdAp0/EH8jzI3V9lChoBmgJaA9DCN45lKEq5grAlIaUUpRoFUsyaBZHQKdRboUSIxh1fZQoaAZoCWgPQwi2TfG4qNb9v5SGlFKUaBVLMmgWR0CnUSxn3+MqdX2UKGgGaAloD0MIvOmWHeIPE8CUhpRSlGgVSzJoFkdAp1Dnyy2QXHV9lChoBmgJaA9DCEpCIm3jrwDAlIaUUpRoFUsyaBZHQKdQqw7DEWJ1fZQoaAZoCWgPQwhJnuv7cHAMwJSGlFKUaBVLMmgWR0CnUk9h7VridX2UKGgGaAloD0MIW+1hLxSgEMCUhpRSlGgVSzJoFkdAp1INNvfj0nV9lChoBmgJaA9DCGTo2EElLg3AlIaUUpRoFUsyaBZHQKdRyG5c1O11fZQoaAZoCWgPQwiTb7a5Md0IwJSGlFKUaBVLMmgWR0CnUYubiIcjdX2UKGgGaAloD0MI6s9+pIhM/7+UhpRSlGgVSzJoFkdAp1NBwuM+/3V9lChoBmgJaA9DCDbknxnEJwTAlIaUUpRoFUsyaBZHQKdS/6N2ki51fZQoaAZoCWgPQwisyOiAJEwQwJSGlFKUaBVLMmgWR0CnUrskpqh2dX2UKGgGaAloD0MIpwaaz7l7BMCUhpRSlGgVSzJoFkdAp1J+criEQHV9lChoBmgJaA9DCDMYIxKF5hLAlIaUUpRoFUsyaBZHQKdUOijcmBx1fZQoaAZoCWgPQwhEb/HwnlMRwJSGlFKUaBVLMmgWR0CnU/hPbfxddX2UKGgGaAloD0MIDw72JoZEDcCUhpRSlGgVSzJoFkdAp1OzsyBTXXV9lChoBmgJaA9DCFYsflNYCQvAlIaUUpRoFUsyaBZHQKdTd0NjLB91fZQoaAZoCWgPQwgs81Zdh2oKwJSGlFKUaBVLMmgWR0CnVVqc/dIodX2UKGgGaAloD0MIcjPcgM8vCMCUhpRSlGgVSzJoFkdAp1UZG6PKdXV9lChoBmgJaA9DCN2YnrDEYwvAlIaUUpRoFUsyaBZHQKdU1YDklu51fZQoaAZoCWgPQwhbBpylZDn7v5SGlFKUaBVLMmgWR0CnVJk1VHWjdX2UKGgGaAloD0MIE0n0MorFA8CUhpRSlGgVSzJoFkdAp1bTDZUT+XV9lChoBmgJaA9DCCRGzy10RQPAlIaUUpRoFUsyaBZHQKdWkdtEXtV1fZQoaAZoCWgPQwhGlWHcDcIBwJSGlFKUaBVLMmgWR0CnVk3t0FKTdX2UKGgGaAloD0MIRmCsb2DyEMCUhpRSlGgVSzJoFkdAp1YSiblRxnV9lChoBmgJaA9DCJViR+NQPwfAlIaUUpRoFUsyaBZHQKdYY4p+c6N1fZQoaAZoCWgPQwhNwK+RJKgGwJSGlFKUaBVLMmgWR0CnWCKNQ0oCdX2UKGgGaAloD0MIZRu4A3W6EMCUhpRSlGgVSzJoFkdAp1ffD+BH1HV9lChoBmgJaA9DCNek2xK5YAzAlIaUUpRoFUsyaBZHQKdXowhW5pd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (730 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.53335564089939, "std_reward": 0.6522809161249655, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-17T19:21:01.894586"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99da338e0e309697204662598399fb8c0549b230694b44dc93e073fdc802005f
|
3 |
+
size 2381
|