ddellapietra
commited on
Commit
•
4b5a955
1
Parent(s):
40d5853
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
|
5 |
+
# SciPhi-SearchAgent-Alpha-7B Model Card
|
6 |
+
|
7 |
+
The SciPhi-SearchAgent-Alpha-7B is a Large Language Model (LLM) fine-tuned from Mistral-7B-v0.1. This model underwent a fine-tuning process using retrieval-augmented generation (RAG) over search with a fully synthetic dataset. The objective of this work is to generate accurate and well-cited summaries from a range of search results, providing more accurate answers to user queries. For best results, follow the prompting guidelines below.
|
8 |
+
|
9 |
+
SciPhi-AI is available via a free hosted API, though the exposed model can vary. Currently, SciPhi-SearchAgent-Alpha-7B is available. More details can be found in the docs [here](https://sciphi.readthedocs.io/en/latest/setup/quickstart.html).
|
10 |
+
|
11 |
+
## Model Architecture
|
12 |
+
|
13 |
+
Base Model: Mistral-7B-v0.1
|
14 |
+
|
15 |
+
**Architecture Features:**
|
16 |
+
- Transformer-based model
|
17 |
+
- Grouped-Query Attention
|
18 |
+
- Sliding-Window Attention
|
19 |
+
- Byte-fallback BPE tokenizer
|
20 |
+
|
21 |
+
|
22 |
+
## Using the Model
|
23 |
+
|
24 |
+
It is recommended to use a single search query. The model will return an answer using search results as context.
|
25 |
+
|
26 |
+
In order to use the model, you can go to the website https://search.sciphi.ai/, or you can run it locally using the following simple command:
|
27 |
+
|
28 |
+
```
|
29 |
+
export SCIPHI_API_KEY=MY_SCIPHI_API_KEY
|
30 |
+
# Use the SciPhi `SearchAgent` for LLM RAG w/ AgentSearch
|
31 |
+
python -m agent_search.scripts.run_rag run --query="What is Fermat's last theorem?"
|
32 |
+
```
|
33 |
+
|
34 |
+
See the documentation, linked above, for more information.
|
35 |
+
|
36 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
37 |
+
|
38 |
+
## References
|
39 |
+
|
40 |
+
1. Lian, W., Goodson, B., Wang, G., Pentland, E., Cook, A., Vong, C., & Teknium. (2023). MistralOrca: Mistral-7B Model Instruct-tuned on Filtered OpenOrcaV1 GPT-4 Dataset. *HuggingFace repository*. [Link](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca)
|
41 |
+
2. Mukherjee, S., Mitra, A., Jawahar, G., Agarwal, S., Palangi, H., & Awadallah, A. (2023). Orca: Progressive Learning from Complex Explanation Traces of GPT-4. *arXiv preprint arXiv:2306.02707*.
|
42 |
+
3. Longpre, S., Hou, L., Vu, T., Webson, A., Chung, H. W., Tay, Y., Zhou, D., Le, Q. V., Zoph, B., Wei, J., & Roberts, A. (2023). The Flan Collection: Designing Data and Methods for Effective Instruction Tuning. *arXiv preprint arXiv:2301.13688*.
|
43 |
+
4. Mistral AI. (2023). Model Card for Mistral-7B-v0.1. The Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.1 outperforms Llama 2 13B on all benchmarks tested. For full details, please refer to the paper and release blog post. Model Architecture: Transformer with Grouped-Query Attention, Sliding-Window Attention, and Byte-fallback BPE tokenizer. [Link](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
44 |
+
|
45 |
+
|
46 |
+
## Acknowledgements
|
47 |
+
|
48 |
+
Thank you to the [AI Alignment Lab](https://huggingface.co/Alignment-Lab-AI), [vikp](https://huggingface.co/vikp), [jph00](https://huggingface.co/jph00) and others who contributed to this work.
|