Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1249.23 +/- 241.10
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:494a2c769f8fc9dd7f26bd42d02c407b2315afb7aed574666fa3e0b78eb0e76a
|
3 |
+
size 129259
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff1122dd160>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff1122dd1f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff1122dd280>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff1122dd310>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff1122dd3a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff1122dd430>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff1122dd4c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff1122dd550>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff1122dd5e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff1122dd670>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff1122dd700>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff1122dd790>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7ff1122d9510>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674352028502380215,
|
68 |
+
"learning_rate": 0.001,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAL50cj/WNRe/leamPlbD4D/kD9W/OUpYv1YLKb/dNrs9UD6av280FcC4VnG/KDFhvGSDcb95xA0/4qgPvjTZyT8IA90/MMM3vYiCmz1m7TXAVzZHv4TqcD2isQNA1B/YP0aNwL/cQMI+ZGsFwFlYXj9zs44/LX1Kv3MIHD4dK6u/7mgYwBCODL5tFrS/S/8nv0UTRT/6NoU/LAWuPZ8nWr9Rq+M/FAy7vwSDFD8oVxm/j1QTPxysQL9egxvAJPBGv/zpn71wQBFA77BDv4a+TsBzLSo/2a8owO6Z9T7fX5O/AQ8xP2mIw77Fauw+Ve6+P0gLEj6p36C+Q8pXPykmhr+UYKg/C/nDPtiTDUAoA9G+13q3v4/ykD2L6cg+kSzKvzaFSb/Cnlg+Wp9tP9JXYzxJfXG+rGI1QD21Tb8+fns/cy0qP9mvKMDumfU+31+Tv1Bxzj5916i/AWMbv4P6ND+CyKq/QY4QP74bl77y7Ue/afYdPlFdKz9IMz4/NHAHPYfIZj94AP++fgAmPw8mcLp6Zb++6xkcvwsoZz6dF7Q+UKk/P9r0Oj8sFqW9OeKyvnMtKj/cQMI+7pn1Pt9fk7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAat682AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAy56CvQAAAABzefy/AAAAAPK9ET4AAAAAhe7pPwAAAABiVgy9AAAAAJjr2D8AAAAAbA5CvQAAAAAwYvW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/16tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMC+DD4AAAAAOyvhvwAAAAAfpL09AAAAAH2I/T8AAAAAbtOIvQAAAAA8+/g/AAAAAA6naT0AAAAA8VL3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQUeTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA5q4K8AAAAAEbp2b8AAAAAylHDPQAAAAB+0/I/AAAAAMzQ2rwAAAAAM0zwPwAAAADlopS9AAAAAPsd4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRQQS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/QGWPAAAAAAUn/G/AAAAAKa1jr0AAAAA0VL1PwAAAAAfGYK9AAAAAPD+8T8AAAAARJkLvgAAAAC5ku+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJU29K15Sm+MAWyUTegDjAF0lEdAqBva4QSSNnV9lChoBkdAlAyocvM8o2gHTegDaAhHQKgdE5J9RaZ1fZQoaAZHQJeJs8fV7QdoB03oA2gIR0CoHlFum78OdX2UKGgGR0CXVK5NXYDlaAdN6ANoCEdAqCAYKneiz3V9lChoBkdAlG8WPDHfdmgHTegDaAhHQKgn18ma6SV1fZQoaAZHQIzBhxT850doB03oA2gIR0CoKSgrYoRadX2UKGgGR0CVCHXT3IuHaAdN6ANoCEdAqCp0yvcJt3V9lChoBkdAkl73Wvr4WWgHTegDaAhHQKgsQujASFp1fZQoaAZHQI/lZsyi22JoB03oA2gIR0CoNDkbgjyGdX2UKGgGR0CLwzT850bMaAdN6ANoCEdAqDV8FpwjuHV9lChoBkdAljpgoXsPa2gHTegDaAhHQKg2x2t+1Bt1fZQoaAZHQJNAvKbKA8VoB03oA2gIR0CoOJECV8kVdX2UKGgGR0CWzHMdLg4waAdN6ANoCEdAqEBXzOHFgnV9lChoBkdAkKIp+hGpdmgHTegDaAhHQKhBnhiLEUF1fZQoaAZHQJENvltCRfZoB03oA2gIR0CoQtxs/IKddX2UKGgGR0CTRHr6LwWnaAdN6ANoCEdAqESiiM5wO3V9lChoBkdAld+PLTx5LWgHTegDaAhHQKhMaCT2WY51fZQoaAZHQJJ/n0QK8cxoB03oA2gIR0CoTaWKuSwGdX2UKGgGR0CYThQRwqAjaAdN6ANoCEdAqE7jJQtSRHV9lChoBkdAmv5qa9bosGgHTegDaAhHQKhQoRChN/R1fZQoaAZHQJfr2ZVn27FoB03oA2gIR0CoWHK9PDYRdX2UKGgGR0CTcKo2n88+aAdN6ANoCEdAqFmwVIqb0HV9lChoBkdAkWqX/5tWMmgHTegDaAhHQKha8FN+LFZ1fZQoaAZHQJPbgQf6oEVoB03oA2gIR0CoXLNqxkd4dX2UKGgGR0CaObVHFxXGaAdN6ANoCEdAqGSGeBg/knV9lChoBkdAmmaS0jTrmmgHTegDaAhHQKhl2K508vF1fZQoaAZHQJU+mSkj5bhoB03oA2gIR0CoZxsD4gzQdX2UKGgGR0CYAmmuTzNEaAdN6ANoCEdAqGjXOpsGgXV9lChoBkdAjPB938n/k2gHTegDaAhHQKhwpKvFFUh1fZQoaAZHQJmE2bz9S/FoB03oA2gIR0Cocdk0zj3mdX2UKGgGR0CXan+bVjI8aAdN6ANoCEdAqHMeDg62fHV9lChoBkdAmMC5QpF1CGgHTegDaAhHQKh02FK02Lp1fZQoaAZHQJdE9dkauOloB03oA2gIR0CofK8Empl0dX2UKGgGR0CaeCRpUPxyaAdN6ANoCEdAqH3lnCfpU3V9lChoBkdAmAfROtW+5GgHTegDaAhHQKh/KaKDTSd1fZQoaAZHQJmzknPVurJoB03oA2gIR0CogO6gmJFcdX2UKGgGR0CZYOhy8zyjaAdN6ANoCEdAqIjk/r0J4XV9lChoBkdAluFBtk4FR2gHTegDaAhHQKiKFqFAVwh1fZQoaAZHQJrm7NZ/0/ZoB03oA2gIR0Coi1349HMEdX2UKGgGR0CbjZxn3+MqaAdN6ANoCEdAqI0jKq4pdHV9lChoBkdAmj3+k56t1mgHTegDaAhHQKiU7aRISUV1fZQoaAZHQJl6QRe1KGtoB03oA2gIR0ColiWykbgkdX2UKGgGR0CcCj0ygwoLaAdN6ANoCEdAqJdxYaHbh3V9lChoBkdAmzepXdTHbWgHTegDaAhHQKiZNlIVdop1fZQoaAZHQJeXafapPyloB03oA2gIR0CooQ6T4cm0dX2UKGgGR0CY2C9EkSmJaAdN6ANoCEdAqKJA3aSLZXV9lChoBkdAmvOtp/PPcGgHTegDaAhHQKijiBBiTdN1fZQoaAZHQJsQ6SRr8BNoB03oA2gIR0CopUwQL/jsdX2UKGgGR0CZ0d9YwIt2aAdN6ANoCEdAqK1Nkxyn1nV9lChoBkdAmQB2a6STyWgHTegDaAhHQKiuh8baRIV1fZQoaAZHQJm5B82Jiy9oB03oA2gIR0Cor+cbJfY0dX2UKGgGR0Ca6iGkN4JNaAdN6ANoCEdAqLG1ENOM2nV9lChoBkdAl5gGb5M10mgHTegDaAhHQKi5jl2/zrh1fZQoaAZHQJi4Bn3+MqBoB03oA2gIR0CousvBrN4adX2UKGgGR0CaMEqKP4mDaAdN6ANoCEdAqLwQZGax5nV9lChoBkdAmdA+qvNeMWgHTegDaAhHQKi94WtU4rB1fZQoaAZHQJoBS2F36hxoB03oA2gIR0CoxZcAR02cdX2UKGgGR0CW3w1KGtZFaAdN6ANoCEdAqMbTk8zQ/3V9lChoBkdAmOdwudwvQGgHTegDaAhHQKjIHVlwtJ51fZQoaAZHQJpcqOo5xR5oB03oA2gIR0CoyejgydnTdX2UKGgGR0CZjx2TPjXGaAdN6ANoCEdAqNHoyCWeH3V9lChoBkdAmFPlUyYXwmgHTegDaAhHQKjTLOYYzi11fZQoaAZHQJr6eL5ylvZoB03oA2gIR0Co1HPzWf9QdX2UKGgGR0CTXGeIEbHZaAdN6ANoCEdAqNY1zwMH8nV9lChoBkdAk+ZO7lJYkmgHTegDaAhHQKjeBYSQHRl1fZQoaAZHQJdNpwsGxD9oB03oA2gIR0Co30STyJ9BdX2UKGgGR0CRx9dxhlUZaAdN6ANoCEdAqOCSqXF98nV9lChoBkdAmnF3Dm8ujGgHTegDaAhHQKjiXNyHVPN1fZQoaAZHQJWQeY/mknFoB03oA2gIR0Co6m/Dk2gndX2UKGgGR0CXCSEQoTf0aAdN6ANoCEdAqOuuZ/kNnXV9lChoBkdAl6tX31zySWgHTegDaAhHQKjs+WXTmXB1fZQoaAZHQJZNtQtSQ5poB03oA2gIR0Co7sTB68g7dX2UKGgGR0CRwJWE9MbnaAdN6ANoCEdAqPbEpLEk0XV9lChoBkdAk7fvAbhm5GgHTegDaAhHQKj4CgxrSE11fZQoaAZHQJEuFJbt7a9oB03oA2gIR0Co+VtRFZxJdX2UKGgGR0CLxJvP1L8KaAdN6ANoCEdAqPsiEQGwA3V9lChoBkdAj09R8twrD2gHTegDaAhHQKkDGw3YL9d1fZQoaAZHQJjy1/YrauhoB03oA2gIR0CpBFQ9JSR9dX2UKGgGR0CTmIHxBmf5aAdN6ANoCEdAqQWj/hl183V9lChoBkdAlGXNyo4uLGgHTegDaAhHQKkHbfWMCLd1fZQoaAZHQJNANvLowEhoB03oA2gIR0CpD0hN21UmdX2UKGgGR0CULR5EMLF5aAdN6ANoCEdAqRCA6+36RHV9lChoBkdAliQVy/9Hc2gHTegDaAhHQKkRyKYRdyF1fZQoaAZHQJNSfSDyvs9oB03oA2gIR0CpE4Xn6l+FdX2UKGgGR0CUm/JPIn0DaAdN6ANoCEdAqRszF+/gznV9lChoBkdAmAZVFpfx+mgHTegDaAhHQKkca5Zr57B1fZQoaAZHQJNnaM+/xlRoB03oA2gIR0CpHambb1yvdX2UKGgGR0CWpYfmcOLBaAdN6ANoCEdAqR9pxkupTHV9lChoBkdAkgkw7o0Q9WgHTegDaAhHQKknRpyp71J1fZQoaAZHQIyKPp6hQFdoB03oA2gIR0CpKIyr5qM4dX2UKGgGR0CC6BdkauOkaAdN6ANoCEdAqSnY7PppvnV9lChoBkdAj5dve54GEGgHTegDaAhHQKkroBVdX1d1fZQoaAZHQJE/tjriVB5oB03oA2gIR0CpM290aIepdX2UKGgGR0CUgsD1XeWOaAdN6ANoCEdAqTSoO+ZgHHV9lChoBkdAk2XzUZvUBmgHTegDaAhHQKk17cpsoDx1fZQoaAZHQJNrYQFs54poB03oA2gIR0CpN7EGZ/kOdX2UKGgGR0CWq4wosqaxaAdN6ANoCEdAqT94Mc6vJXV9lChoBkdAk0iNmDlHSWgHTegDaAhHQKlAu6GxlhB1fZQoaAZHQJDlgGcFyJdoB03oA2gIR0CpQfnied08dX2UKGgGR0CQvpB1s+FDaAdN6ANoCEdAqUO8Oqebu3VlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 50000,
|
99 |
+
"n_steps": 10,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2254fc87529a1f0b5d3734dc5698b29d1e5fdecece39fa763281f5db53483ca0
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e1f489c1f39c6303c4b1ad7eb2b11424141a412eb4f943a99a20610c7054928
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff1122dd160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff1122dd1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff1122dd280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff1122dd310>", "_build": "<function ActorCriticPolicy._build at 0x7ff1122dd3a0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff1122dd430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff1122dd4c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff1122dd550>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff1122dd5e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff1122dd670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff1122dd700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff1122dd790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff1122d9510>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674352028502380215, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAL50cj/WNRe/leamPlbD4D/kD9W/OUpYv1YLKb/dNrs9UD6av280FcC4VnG/KDFhvGSDcb95xA0/4qgPvjTZyT8IA90/MMM3vYiCmz1m7TXAVzZHv4TqcD2isQNA1B/YP0aNwL/cQMI+ZGsFwFlYXj9zs44/LX1Kv3MIHD4dK6u/7mgYwBCODL5tFrS/S/8nv0UTRT/6NoU/LAWuPZ8nWr9Rq+M/FAy7vwSDFD8oVxm/j1QTPxysQL9egxvAJPBGv/zpn71wQBFA77BDv4a+TsBzLSo/2a8owO6Z9T7fX5O/AQ8xP2mIw77Fauw+Ve6+P0gLEj6p36C+Q8pXPykmhr+UYKg/C/nDPtiTDUAoA9G+13q3v4/ykD2L6cg+kSzKvzaFSb/Cnlg+Wp9tP9JXYzxJfXG+rGI1QD21Tb8+fns/cy0qP9mvKMDumfU+31+Tv1Bxzj5916i/AWMbv4P6ND+CyKq/QY4QP74bl77y7Ue/afYdPlFdKz9IMz4/NHAHPYfIZj94AP++fgAmPw8mcLp6Zb++6xkcvwsoZz6dF7Q+UKk/P9r0Oj8sFqW9OeKyvnMtKj/cQMI+7pn1Pt9fk7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAat682AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAy56CvQAAAABzefy/AAAAAPK9ET4AAAAAhe7pPwAAAABiVgy9AAAAAJjr2D8AAAAAbA5CvQAAAAAwYvW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/16tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMC+DD4AAAAAOyvhvwAAAAAfpL09AAAAAH2I/T8AAAAAbtOIvQAAAAA8+/g/AAAAAA6naT0AAAAA8VL3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQUeTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA5q4K8AAAAAEbp2b8AAAAAylHDPQAAAAB+0/I/AAAAAMzQ2rwAAAAAM0zwPwAAAADlopS9AAAAAPsd4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRQQS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/QGWPAAAAAAUn/G/AAAAAKa1jr0AAAAA0VL1PwAAAAAfGYK9AAAAAPD+8T8AAAAARJkLvgAAAAC5ku+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJU29K15Sm+MAWyUTegDjAF0lEdAqBva4QSSNnV9lChoBkdAlAyocvM8o2gHTegDaAhHQKgdE5J9RaZ1fZQoaAZHQJeJs8fV7QdoB03oA2gIR0CoHlFum78OdX2UKGgGR0CXVK5NXYDlaAdN6ANoCEdAqCAYKneiz3V9lChoBkdAlG8WPDHfdmgHTegDaAhHQKgn18ma6SV1fZQoaAZHQIzBhxT850doB03oA2gIR0CoKSgrYoRadX2UKGgGR0CVCHXT3IuHaAdN6ANoCEdAqCp0yvcJt3V9lChoBkdAkl73Wvr4WWgHTegDaAhHQKgsQujASFp1fZQoaAZHQI/lZsyi22JoB03oA2gIR0CoNDkbgjyGdX2UKGgGR0CLwzT850bMaAdN6ANoCEdAqDV8FpwjuHV9lChoBkdAljpgoXsPa2gHTegDaAhHQKg2x2t+1Bt1fZQoaAZHQJNAvKbKA8VoB03oA2gIR0CoOJECV8kVdX2UKGgGR0CWzHMdLg4waAdN6ANoCEdAqEBXzOHFgnV9lChoBkdAkKIp+hGpdmgHTegDaAhHQKhBnhiLEUF1fZQoaAZHQJENvltCRfZoB03oA2gIR0CoQtxs/IKddX2UKGgGR0CTRHr6LwWnaAdN6ANoCEdAqESiiM5wO3V9lChoBkdAld+PLTx5LWgHTegDaAhHQKhMaCT2WY51fZQoaAZHQJJ/n0QK8cxoB03oA2gIR0CoTaWKuSwGdX2UKGgGR0CYThQRwqAjaAdN6ANoCEdAqE7jJQtSRHV9lChoBkdAmv5qa9bosGgHTegDaAhHQKhQoRChN/R1fZQoaAZHQJfr2ZVn27FoB03oA2gIR0CoWHK9PDYRdX2UKGgGR0CTcKo2n88+aAdN6ANoCEdAqFmwVIqb0HV9lChoBkdAkWqX/5tWMmgHTegDaAhHQKha8FN+LFZ1fZQoaAZHQJPbgQf6oEVoB03oA2gIR0CoXLNqxkd4dX2UKGgGR0CaObVHFxXGaAdN6ANoCEdAqGSGeBg/knV9lChoBkdAmmaS0jTrmmgHTegDaAhHQKhl2K508vF1fZQoaAZHQJU+mSkj5bhoB03oA2gIR0CoZxsD4gzQdX2UKGgGR0CYAmmuTzNEaAdN6ANoCEdAqGjXOpsGgXV9lChoBkdAjPB938n/k2gHTegDaAhHQKhwpKvFFUh1fZQoaAZHQJmE2bz9S/FoB03oA2gIR0Cocdk0zj3mdX2UKGgGR0CXan+bVjI8aAdN6ANoCEdAqHMeDg62fHV9lChoBkdAmMC5QpF1CGgHTegDaAhHQKh02FK02Lp1fZQoaAZHQJdE9dkauOloB03oA2gIR0CofK8Empl0dX2UKGgGR0CaeCRpUPxyaAdN6ANoCEdAqH3lnCfpU3V9lChoBkdAmAfROtW+5GgHTegDaAhHQKh/KaKDTSd1fZQoaAZHQJmzknPVurJoB03oA2gIR0CogO6gmJFcdX2UKGgGR0CZYOhy8zyjaAdN6ANoCEdAqIjk/r0J4XV9lChoBkdAluFBtk4FR2gHTegDaAhHQKiKFqFAVwh1fZQoaAZHQJrm7NZ/0/ZoB03oA2gIR0Coi1349HMEdX2UKGgGR0CbjZxn3+MqaAdN6ANoCEdAqI0jKq4pdHV9lChoBkdAmj3+k56t1mgHTegDaAhHQKiU7aRISUV1fZQoaAZHQJl6QRe1KGtoB03oA2gIR0ColiWykbgkdX2UKGgGR0CcCj0ygwoLaAdN6ANoCEdAqJdxYaHbh3V9lChoBkdAmzepXdTHbWgHTegDaAhHQKiZNlIVdop1fZQoaAZHQJeXafapPyloB03oA2gIR0CooQ6T4cm0dX2UKGgGR0CY2C9EkSmJaAdN6ANoCEdAqKJA3aSLZXV9lChoBkdAmvOtp/PPcGgHTegDaAhHQKijiBBiTdN1fZQoaAZHQJsQ6SRr8BNoB03oA2gIR0CopUwQL/jsdX2UKGgGR0CZ0d9YwIt2aAdN6ANoCEdAqK1Nkxyn1nV9lChoBkdAmQB2a6STyWgHTegDaAhHQKiuh8baRIV1fZQoaAZHQJm5B82Jiy9oB03oA2gIR0Cor+cbJfY0dX2UKGgGR0Ca6iGkN4JNaAdN6ANoCEdAqLG1ENOM2nV9lChoBkdAl5gGb5M10mgHTegDaAhHQKi5jl2/zrh1fZQoaAZHQJi4Bn3+MqBoB03oA2gIR0CousvBrN4adX2UKGgGR0CaMEqKP4mDaAdN6ANoCEdAqLwQZGax5nV9lChoBkdAmdA+qvNeMWgHTegDaAhHQKi94WtU4rB1fZQoaAZHQJoBS2F36hxoB03oA2gIR0CoxZcAR02cdX2UKGgGR0CW3w1KGtZFaAdN6ANoCEdAqMbTk8zQ/3V9lChoBkdAmOdwudwvQGgHTegDaAhHQKjIHVlwtJ51fZQoaAZHQJpcqOo5xR5oB03oA2gIR0CoyejgydnTdX2UKGgGR0CZjx2TPjXGaAdN6ANoCEdAqNHoyCWeH3V9lChoBkdAmFPlUyYXwmgHTegDaAhHQKjTLOYYzi11fZQoaAZHQJr6eL5ylvZoB03oA2gIR0Co1HPzWf9QdX2UKGgGR0CTXGeIEbHZaAdN6ANoCEdAqNY1zwMH8nV9lChoBkdAk+ZO7lJYkmgHTegDaAhHQKjeBYSQHRl1fZQoaAZHQJdNpwsGxD9oB03oA2gIR0Co30STyJ9BdX2UKGgGR0CRx9dxhlUZaAdN6ANoCEdAqOCSqXF98nV9lChoBkdAmnF3Dm8ujGgHTegDaAhHQKjiXNyHVPN1fZQoaAZHQJWQeY/mknFoB03oA2gIR0Co6m/Dk2gndX2UKGgGR0CXCSEQoTf0aAdN6ANoCEdAqOuuZ/kNnXV9lChoBkdAl6tX31zySWgHTegDaAhHQKjs+WXTmXB1fZQoaAZHQJZNtQtSQ5poB03oA2gIR0Co7sTB68g7dX2UKGgGR0CRwJWE9MbnaAdN6ANoCEdAqPbEpLEk0XV9lChoBkdAk7fvAbhm5GgHTegDaAhHQKj4CgxrSE11fZQoaAZHQJEuFJbt7a9oB03oA2gIR0Co+VtRFZxJdX2UKGgGR0CLxJvP1L8KaAdN6ANoCEdAqPsiEQGwA3V9lChoBkdAj09R8twrD2gHTegDaAhHQKkDGw3YL9d1fZQoaAZHQJjy1/YrauhoB03oA2gIR0CpBFQ9JSR9dX2UKGgGR0CTmIHxBmf5aAdN6ANoCEdAqQWj/hl183V9lChoBkdAlGXNyo4uLGgHTegDaAhHQKkHbfWMCLd1fZQoaAZHQJNANvLowEhoB03oA2gIR0CpD0hN21UmdX2UKGgGR0CULR5EMLF5aAdN6ANoCEdAqRCA6+36RHV9lChoBkdAliQVy/9Hc2gHTegDaAhHQKkRyKYRdyF1fZQoaAZHQJNSfSDyvs9oB03oA2gIR0CpE4Xn6l+FdX2UKGgGR0CUm/JPIn0DaAdN6ANoCEdAqRszF+/gznV9lChoBkdAmAZVFpfx+mgHTegDaAhHQKkca5Zr57B1fZQoaAZHQJNnaM+/xlRoB03oA2gIR0CpHambb1yvdX2UKGgGR0CWpYfmcOLBaAdN6ANoCEdAqR9pxkupTHV9lChoBkdAkgkw7o0Q9WgHTegDaAhHQKknRpyp71J1fZQoaAZHQIyKPp6hQFdoB03oA2gIR0CpKIyr5qM4dX2UKGgGR0CC6BdkauOkaAdN6ANoCEdAqSnY7PppvnV9lChoBkdAj5dve54GEGgHTegDaAhHQKkroBVdX1d1fZQoaAZHQJE/tjriVB5oB03oA2gIR0CpM290aIepdX2UKGgGR0CUgsD1XeWOaAdN6ANoCEdAqTSoO+ZgHHV9lChoBkdAk2XzUZvUBmgHTegDaAhHQKk17cpsoDx1fZQoaAZHQJNrYQFs54poB03oA2gIR0CpN7EGZ/kOdX2UKGgGR0CWq4wosqaxaAdN6ANoCEdAqT94Mc6vJXV9lChoBkdAk0iNmDlHSWgHTegDaAhHQKlAu6GxlhB1fZQoaAZHQJDlgGcFyJdoB03oA2gIR0CpQfnied08dX2UKGgGR0CQvpB1s+FDaAdN6ANoCEdAqUO8Oqebu3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 10, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a3ad4932ee6a528ecc1a33237afdb775098c4eecc81ca0283bf1ef567f71b66
|
3 |
+
size 1066434
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1249.2289085363561, "std_reward": 241.10316700808295, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T03:04:25.480345"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af457226d0eb6099dbb755d68962aa51c7a44916e4899d120e5fec3bcc5cf229
|
3 |
+
size 2136
|