--- language: tr datasets: - TurEV tags: - audio - speech - speech-emotion-recognition license: apache-2.0 pipeline_tag: audio-classification --- # Emotion Recognition in Turkish Speech using HuBERT This HuBERT model is trained on [TurEV-DB](https://github.com/Xeonen/TurEV-DB) to achieve speech emotion recognition (SER) in Turkish. ## How to use ### Requirements ```bash # requirement packages !pip install git+https://github.com/huggingface/datasets.git !pip install git+https://github.com/huggingface/transformers.git !pip install torchaudio !pip install librosa ``` ```bash !git clone https://github.com/SeaBenSea/HuBERT-SER.git ``` ### Prediction ```python import sys sys.path.insert(1, './HuBERT-SER/') import torch import torch.nn as nn import torch.nn.functional as F import torchaudio from transformers import AutoConfig, Wav2Vec2FeatureExtractor from src.models import Wav2Vec2ForSpeechClassification, HubertForSpeechClassification ``` ```python model_name_or_path = "SeaBenSea/hubert-large-turkish-speech-emotion-recognition" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") config = AutoConfig.from_pretrained(model_name_or_path) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) sampling_rate = feature_extractor.sampling_rate model = HubertForSpeechClassification.from_pretrained(model_name_or_path).to(device) ``` ```python def speech_file_to_array_fn(path, sampling_rate): speech_array, _sampling_rate = torchaudio.load(path) resampler = torchaudio.transforms.Resample(_sampling_rate, sampling_rate) speech = resampler(speech_array).squeeze().numpy() return speech def predict(path, sampling_rate): speech = speech_file_to_array_fn(path, sampling_rate) inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) inputs = {key: inputs[key].to(device) for key in inputs} with torch.no_grad(): logits = model(**inputs).logits scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] return outputs ``` ```python path = "../dataset/TurEV/Angry/1157_kz_acik.wav" outputs = predict(path, sampling_rate) outputs ``` ```bash [ {'Emotion': 'Angry', 'Score': '99.8%'}, {'Emotion': 'Calm', 'Score': '0.0%'}, {'Emotion': 'Happy', 'Score': '0.1%'}, {'Emotion': 'Sad', 'Score': '0.1%'} ] ``` ## Evaluation The following tables summarize the scores obtained by model overall and per each class. | Emotions | precision | recall | f1-score | accuracy | |:---------:|:---------:|:------:|:--------:|:--------:| | Angry | 0.97 | 0.99 | 0.98 | | | Calm | 0.89 | 0.95 | 0.92 | | | Happy | 0.98 | 0.93 | 0.95 | | | Sad | 0.97 | 0.93 | 0.95 | | | | | | Overal | 0.95 | ## Questions? Post a Github issue from [HERE](https://github.com/SeaBenSea/HuBERT-SER).