SeanScripts commited on
Commit
850f6e8
·
verified ·
1 Parent(s): 4aaa6e7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -3
README.md CHANGED
@@ -1,3 +1,48 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model:
4
+ - mistral-community/pixtral-12b
5
+ pipeline_tag: visual-question-answering
6
+ library_name: transformers
7
+ ---
8
+
9
+ Converted from [mistral-community/pixtral-12b](https://huggingface.co/mistral-community/pixtral-12b) using BitsAndBytes with NF4 (4-bit) quantization. Not using double quantization.
10
+ Requires `bitsandbytes` to load.
11
+
12
+ Example usage for image captioning:
13
+ ```python
14
+ from transformers import LlavaForConditionalGeneration, AutoProcessor, BitsAndBytesConfig
15
+ from PIL import Image
16
+ import time
17
+
18
+ # Load model
19
+ model_id = "./pixtral-12b-nf4"
20
+ model = LlavaForConditionalGeneration.from_pretrained(
21
+ model_id,
22
+ use_safetensors=True,
23
+ device_map="cuda:0"
24
+ )
25
+ # Load tokenizer
26
+ processor = AutoProcessor.from_pretrained(model_id)
27
+
28
+ # Caption a local image
29
+ IMG_URLS = [Image.open("test.png").convert("RGB")]
30
+ PROMPT = "<s>[INST]Caption this image:\n[IMG][/INST]"
31
+
32
+ inputs = processor(images=IMG_URLS, text=PROMPT, return_tensors="pt").to("cuda")
33
+ prompt_tokens = len(inputs['input_ids'][0])
34
+ print(f"Prompt tokens: {prompt_tokens}")
35
+
36
+ t0 = time.time()
37
+ generate_ids = model.generate(**inputs, max_new_tokens=512)
38
+ t1 = time.time()
39
+ total_time = t1 - t0
40
+ generated_tokens = len(generate_ids[0]) - prompt_tokens
41
+ time_per_token = generated_tokens/total_time
42
+ print(f"Generated {generated_tokens} tokens in {total_time:.3f} s ({time_per_token:.3f} tok/s)")
43
+
44
+ output = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
45
+ print(output)
46
+ ```
47
+
48
+ On a 4090, this is getting about 10 - 12 tok/s (without flash attention) and the captions seem pretty good, though I haven't tested very many. It uses about 10 GB VRAM.