Last commit not found
from tensorflow.data import Dataset | |
import tensorflow.keras as keras | |
from tensorflow.keras.optimizers import Adam | |
from tensorflow.keras.layers import ( | |
Conv2D, | |
Input, | |
MaxPooling2D, | |
Dense, | |
Dropout, | |
MaxPool1D, | |
Flatten, | |
AveragePooling1D, | |
BatchNormalization, | |
) | |
from tensorflow.keras import Model | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.models import Model | |
from tensorflow.keras.layers import Input, Add, Activation, Dropout, Flatten, Dense | |
from tensorflow.keras.layers import Convolution2D, MaxPooling2D, AveragePooling2D | |
from tensorflow.keras.layers import BatchNormalization | |
from tensorflow.keras.regularizers import l2 | |
from tensorflow.keras import backend as K | |
from tensorflow.keras.optimizers import SGD | |
import warnings | |
warnings.filterwarnings("ignore") | |
def basemodel(weight_decay): | |
# 2 hidden layers | |
model_input = Input( | |
shape=( | |
32, | |
32, | |
1, | |
) | |
) | |
model = Conv2D( | |
32, | |
kernel_size=(3, 3), | |
kernel_regularizer=l2(weight_decay), | |
activation="relu", | |
)(model_input) | |
model = Conv2D( | |
64, kernel_size=(3, 3), kernel_regularizer=l2(weight_decay), activation="relu" | |
)(model) | |
model = MaxPooling2D(pool_size=(2, 2))(model) | |
model = BatchNormalization()(model) | |
model = Flatten()(model) | |
model = Dense(4, kernel_regularizer=l2(weight_decay), activation="softmax")(model) | |
model = Model(inputs=model_input, outputs=model) | |
return model | |
def model_2(weight_decay): | |
model_input = Input( | |
shape=( | |
32, | |
32, | |
1, | |
) | |
) | |
model = Conv2D( | |
32, | |
kernel_size=(3, 3), | |
kernel_regularizer=l2(weight_decay), | |
activation="relu", | |
)(model_input) | |
model = Conv2D( | |
64, kernel_size=(3, 3), kernel_regularizer=l2(weight_decay), activation="relu" | |
)(model) | |
model = MaxPooling2D(pool_size=(2, 2))(model) | |
model = BatchNormalization()(model) | |
model = Conv2D( | |
128, kernel_size=(3, 3), kernel_regularizer=l2(weight_decay), activation="relu" | |
)(model) | |
model = MaxPooling2D(pool_size=(2, 2))(model) | |
model = BatchNormalization()(model) | |
model = Flatten()(model) | |
model = Dense(4, kernel_regularizer=l2(weight_decay), activation="softmax")(model) | |
model = Model(inputs=model_input, outputs=model) | |
return model | |
def model_3(weight_decay): | |
# 4 hidden layers | |
model_input = Input( | |
shape=( | |
32, | |
32, | |
1, | |
) | |
) | |
model = Conv2D( | |
32, | |
kernel_size=(3, 3), | |
kernel_regularizer=l2(weight_decay), | |
activation="relu", | |
)(model_input) | |
model = Conv2D( | |
64, kernel_size=(3, 3), kernel_regularizer=l2(weight_decay), activation="relu" | |
)(model) | |
model = MaxPooling2D(pool_size=(2, 2))(model) | |
model = BatchNormalization()(model) | |
model = Conv2D( | |
128, kernel_size=(3, 3), kernel_regularizer=l2(weight_decay), activation="relu" | |
)(model) | |
model = MaxPooling2D(pool_size=(2, 2))(model) | |
model = BatchNormalization()(model) | |
model = Conv2D( | |
256, kernel_size=(3, 3), kernel_regularizer=l2(weight_decay), activation="relu" | |
)(model) | |
model = MaxPooling2D(pool_size=(2, 2))(model) | |
model = BatchNormalization()(model) | |
model = Flatten()(model) | |
model = Dense(4, kernel_regularizer=l2(weight_decay), activation="softmax")(model) | |
model = Model(inputs=model_input, outputs=model) | |
return model | |