{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a68cd3c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a68cd3ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a68cd3d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a68cd3dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f9a68cd3e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f9a68cd3ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9a68cd3f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a68cd9040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9a68cd90d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a68cd9160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a68cd91f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a68cd9280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9a68cd16f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674741395556677561, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAM5e+z+JhIS/lvyBP/olE79K+1W/Dn6WPTyqdb9I2Go/lmsGvew5jTxz1Io+nIHXvMHSir/tIMc7ZRYuwBTJZjwssB1AmNHKO3+icsAizi89ZOFvvwIQBT2h0jVApoCxvIsTUT/8Dx0/z2cbwNnHsT6neA9ACRZfP3VwGb7t9YY/CNYJQNqF2r8sLC5ATj3LvyyvV78gAcU8CexRvhK16z/3KvY/GYLXv1O3wr/75pg/1WGQv7zQqzzdSiY/6yEKPX8XIr8tWUw/YpYsvpswvb85upy/YaHQv89nG8DZx7E+4QQRvp6eGz9YKOS/dUmMv2XCL7+Ihvk+/IoaP3tSqr6Rzr+/NMMiP+ARBz+MikG9nFA/v1B2jL9WPUQ/fksUQORXkL9jeKU8HUQFP56sOr6VGwdAS/JHQDx6E77mUx1AixNRP2Gh0L/V2tI+J1E4wKgZDj8NWYA/SaFOv0i4L78dPwi/S5OFPZtUTz87pkq/7UbSvyDwhr748d8/1gY/vSrbOD9PNCW/ABhVvg2JOD8nJJG/L9mdPRiJFz9YMpg84hjfviLtHj+dvEa+PCd2v4sTUT/8Dx0/1drSPtnHsT6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADMsNU1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0inbOwAAAABEj9q/AAAAAOGJjz0AAAAATI7nPwAAAAARxTU5AAAAAEsT2j8AAAAAaUNeuwAAAADGQ+W/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARVLiNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIRzT70AAAAAZGjtvwAAAADeIBI+AAAAALbM+z8AAAAA1bgAPgAAAAAvGO0/AAAAABe69TwAAAAAL8fZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrukDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICZo+S9AAAAAE9a778AAAAAb4CIvQAAAACPr90/AAAAAEVBkr0AAAAAY8nyPwAAAADTkpG9AAAAAB4bAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACxQwO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+CnnPQAAAAC78/y/AAAAAGUFLjwAAAAAlrf+PwAAAADlNXK9AAAAAOIK3D8AAAAAQRSbvQAAAADLeuC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIczR/oaDPKMAWyUTegDjAF0lEdAp/Wt49ovjHV9lChoBkdAisPv5P/JeWgHTegDaAhHQKf16/BWPtF1fZQoaAZHQIc+IIQe3hJoB03oA2gIR0Cn+fiMglnidX2UKGgGR0CKURDsMRYjaAdN6ANoCEdAp/5eQwK0D3V9lChoBkdAi7a3Ov+wT2gHTegDaAhHQKgCJwe/5+J1fZQoaAZHQImMmoBJZntoB03oA2gIR0CoAmTiS7oTdX2UKGgGR0COQfhXKbKBaAdN6ANoCEdAqAaTOX3QD3V9lChoBkdAkD7VKPGQ0WgHTegDaAhHQKgLAA6uGK11fZQoaAZHQJFhzCVKPGRoB03oA2gIR0CoDr8e0XxfdX2UKGgGR0CQH2irksBiaAdN6ANoCEdAqA73tv4ub3V9lChoBkdAkKBRT4tYjmgHTegDaAhHQKgTAUyHmA91fZQoaAZHQJDeykk8ifRoB03oA2gIR0CoF4D50r9VdX2UKGgGR0CQ/PQjlgc+aAdN6ANoCEdAqBtFl9SdfHV9lChoBkdAkhXMDfWMCWgHTegDaAhHQKgbgTYdyT91fZQoaAZHQJGSBJJ5E+hoB03oA2gIR0CoH5srmQr+dX2UKGgGR0CRbyGecx0uaAdN6ANoCEdAqCQscfeUIXV9lChoBkdAiZ5Y2S+xnmgHTegDaAhHQKgn8NDMNc51fZQoaAZHQI/IKWJJoTRoB03oA2gIR0CoKCmJWNm2dX2UKGgGR0CGodR2r4nGaAdN6ANoCEdAqCw2U0Nz83V9lChoBkdAgCM68Yht+GgHTegDaAhHQKgwmYYR/Vl1fZQoaAZHQIci2gi/wiJoB03oA2gIR0CoNF/NZ/0/dX2UKGgGR0CFOeJLuhK2aAdN6ANoCEdAqDSbT2FnI3V9lChoBkdAhi16GgzxgGgHTegDaAhHQKg4npmmLtN1fZQoaAZHQH7cQdjoZAJoB03oA2gIR0CoPSSX+l0pdX2UKGgGR0B3xCoo/iYLaAdN6ANoCEdAqEEYtUXHinV9lChoBkdAhJ46mwaBJGgHTegDaAhHQKhBUj1wo9d1fZQoaAZHQImV21UlzEJoB03oA2gIR0CoRW5R8+ibdX2UKGgGR0CNzW384xUOaAdN6ANoCEdAqEnzwz+FUXV9lChoBkdAjdkYBvJiiWgHTegDaAhHQKhNobo8p1B1fZQoaAZHQJC1JAX2ugZoB03oA2gIR0CoTeAieNDMdX2UKGgGR0CKyq3n6l+FaAdN6ANoCEdAqFH841gpjXV9lChoBkdAjuOFr/Khc2gHTegDaAhHQKhWbkdV/+d1fZQoaAZHQIq9drhzeXRoB03oA2gIR0CoWi5D7ZWadX2UKGgGR0CQBc1RceKbaAdN6ANoCEdAqFpl8G9pRHV9lChoBkdAkIelFc6eXmgHTegDaAhHQKhegQEpy6t1fZQoaAZHQI7oalJpWWBoB03oA2gIR0CoYvWKVII4dX2UKGgGR0CNepfLLZBcaAdN6ANoCEdAqGbIgFHJ93V9lChoBkdAhRDyZ0CA+mgHTegDaAhHQKhnAna37UJ1fZQoaAZHQJKBYYLsrupoB03oA2gIR0CoaxJUxVQzdX2UKGgGR0CHfGSElE7XaAdN6ANoCEdAqG+Fz+3pfXV9lChoBkdAiq/wjt5UtWgHTegDaAhHQKhzNVJ+UhV1fZQoaAZHQInOpMDfWMFoB03oA2gIR0Coc27Lt/nXdX2UKGgGR0B/dypAD7qIaAdN6ANoCEdAqHeGQwK0D3V9lChoBkdAjMD6oddVvWgHTegDaAhHQKh8AmYSg5B1fZQoaAZHQIkqKrPt2LZoB03oA2gIR0CogGDfNzKcdX2UKGgGR0CLkGz/IbOvaAdN6ANoCEdAqIC5YA80UHV9lChoBkdAju1SHEdeY2gHTegDaAhHQKiHRMaCL/F1fZQoaAZHQIWlPBvaURpoB03oA2gIR0CojHwI+nqFdX2UKGgGR0CF3ftl7MPjaAdN6ANoCEdAqJBV9ORDC3V9lChoBkdAf+iqMWGh3GgHTegDaAhHQKiQkutfXwt1fZQoaAZHQH50e6mO2iNoB03oA2gIR0ColKkit7rtdX2UKGgGR0CL9uEPDpC8aAdN6ANoCEdAqJk9clgMMXV9lChoBkdAimUNrj5sTGgHTegDaAhHQKidAQjlgc91fZQoaAZHQIFRS4lQdjpoB03oA2gIR0ConTnQhOgydX2UKGgGR0B4FOoJiRW+aAdN6ANoCEdAqKFU8vEjxHV9lChoBkdAiXRBPj4pMGgHTegDaAhHQKil0oLofSx1fZQoaAZHQHsQ1mBe5WloB03oA2gIR0CoqZfqX4TLdX2UKGgGR0CAfyKGcnVoaAdN6ANoCEdAqKnTm6oVEnV9lChoBkdAgxTpdrwfAGgHTegDaAhHQKit39MsYl91fZQoaAZHQJFKXLns9jhoB03oA2gIR0CosldgF5fMdX2UKGgGR0CQbmBas6q9aAdN6ANoCEdAqLYbEJjUeHV9lChoBkdAiz4lMyrPt2gHTegDaAhHQKi2WtzS1E51fZQoaAZHQIYV/MGHHm1oB03oA2gIR0CouqfBvaUSdX2UKGgGR0B1ElpcophGaAdN6ANoCEdAqL83tlZownV9lChoBkdAjSyCBGx2S2gHTegDaAhHQKjC+2gFotd1fZQoaAZHQIZIe9nK4hFoB03oA2gIR0CowzXKB/ZvdX2UKGgGR0CCCZxwQ176aAdN6ANoCEdAqMdT9ZRsM3V9lChoBkdAg3wNgKF7D2gHTegDaAhHQKjL9DCP6sR1fZQoaAZHQIvEM9pyp71oB03oA2gIR0Coz68nmaH9dX2UKGgGR0CQ9KTl1bJPaAdN6ANoCEdAqM/m+ueSS3V9lChoBkdAkU3PHo5ggGgHTegDaAhHQKjT6NedCmd1fZQoaAZHQI9csoDxLChoB03oA2gIR0Co2GEwWWQfdX2UKGgGR0CI/o5paiblaAdN6ANoCEdAqNws3l0YCXV9lChoBkdAhqNUrCm/FmgHTegDaAhHQKjcZlq8Djl1fZQoaAZHQIG6jcbiqABoB03oA2gIR0Co4Ho3aSLZdX2UKGgGR0CRhRt1IRRNaAdN6ANoCEdAqOTt6w+t83V9lChoBkdAjxEuZTho/WgHTegDaAhHQKjor8F6iTN1fZQoaAZHQIw+rLEDQqtoB03oA2gIR0Co6Omxlg+hdX2UKGgGR0CIafQBPsRhaAdN6ANoCEdAqOz2UB4lhXV9lChoBkdAhGzYDDCP62gHTegDaAhHQKjxf2wmmch1fZQoaAZHQIlEdHxz7uVoB03oA2gIR0Co9VB9kSVXdX2UKGgGR0CEGesiB5HFaAdN6ANoCEdAqPWOKjzqbHV9lChoBkdAhF467EpAlmgHTegDaAhHQKj5nMTN+sp1fZQoaAZHQI6GA3zcynFoB03oA2gIR0Co/h9NN8E3dX2UKGgGR0CQ91NPgvUSaAdN6ANoCEdAqQHNHDrJKnV9lChoBkdAkCzjeoDPnmgHTegDaAhHQKkCBhYNiH91fZQoaAZHQJA9mLNwBHVoB03oA2gIR0CpBgm8mKIjdX2UKGgGR0CQ/Wzgdfb9aAdN6ANoCEdAqQqC2WpqAXV9lChoBkdAko2b7bcoIGgHTegDaAhHQKkOSmNzbN91fZQoaAZHQJIIQLiMo+hoB03oA2gIR0CpDoQ4CIUKdX2UKGgGR0CKwh4iX6ZZaAdN6ANoCEdAqRK14keIVXV9lChoBkdAhZru9vjwQWgHTegDaAhHQKkXNRIBikR1fZQoaAZHQHdr6neizs1oB03oA2gIR0CpGwOvECNkdX2UKGgGR0CQAGqe9SMtaAdN6ANoCEdAqRs+p84Pw3V9lChoBkdAk7aWGmDUVmgHTegDaAhHQKkfWBEroW51fZQoaAZHQIxKG9lEqlRoB03oA2gIR0CpI9dvbXYldX2UKGgGR0CSmoUaQ3glaAdN6ANoCEdAqSepI+W4VnV9lChoBkdAj/DiPZIxxmgHTegDaAhHQKkn4uL74zt1fZQoaAZHQHiEK9wm3ORoB03oA2gIR0CpK+3n6l+FdX2UKGgGR0B6cYvGp++eaAdN6ANoCEdAqTCMm+j/MnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}} |