File size: 15,975 Bytes
8459da0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff23e7c9040>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7ff23e7c1ae0>"
},
"verbose": 1,
"policy_kwargs": {
":type:": "<class 'dict'>",
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
"log_std_init": -2,
"ortho_init": false,
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
"optimizer_kwargs": {
"alpha": 0.99,
"eps": 1e-05,
"weight_decay": 0
}
},
"observation_space": {
":type:": "<class 'gym.spaces.dict.Dict'>",
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
"_shape": null,
"dtype": null,
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
"dtype": "float32",
"_shape": [
3
],
"low": "[-1. -1. -1.]",
"high": "[1. 1. 1.]",
"bounded_below": "[ True True True]",
"bounded_above": "[ True True True]",
"_np_random": null
},
"n_envs": 4,
"num_timesteps": 1000000,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1673967563972419255,
"learning_rate": 0.001,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'collections.OrderedDict'>",
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHrWAPsvMHj2Z1RU/HrWAPsvMHj2Z1RU/HrWAPsvMHj2Z1RU/HrWAPsvMHj2Z1RU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZ1WbP4CCLL9AstU/lAVqv0/uGj+hdYe+7UKJv50hMD9F1Yo/1FLJvXn5tL892qu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAetYA+y8wePZnVFT8+uJQ9mFDAOwiplD0etYA+y8wePZnVFT8+uJQ9mFDAOwiplD0etYA+y8wePZnVFT8+uJQ9mFDAOwiplD0etYA+y8wePZnVFT8+uJQ9mFDAOwiplD2UaA5LBEsGhpRoEnSUUpR1Lg==",
"achieved_goal": "[[0.2513818 0.03876952 0.5852905 ]\n [0.2513818 0.03876952 0.5852905 ]\n [0.2513818 0.03876952 0.5852905 ]\n [0.2513818 0.03876952 0.5852905 ]]",
"desired_goal": "[[ 1.2135438 -0.6738663 1.6695023 ]\n [-0.9141476 0.6051988 -0.2645693 ]\n [-1.0723549 0.6880129 1.0846335 ]\n [-0.09830251 -1.4138633 -1.3425976 ]]",
"observation": "[[0.2513818 0.03876952 0.5852905 0.07261704 0.00586898 0.07258803]\n [0.2513818 0.03876952 0.5852905 0.07261704 0.00586898 0.07258803]\n [0.2513818 0.03876952 0.5852905 0.07261704 0.00586898 0.07258803]\n [0.2513818 0.03876952 0.5852905 0.07261704 0.00586898 0.07258803]]"
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
},
"_last_original_obs": {
":type:": "<class 'collections.OrderedDict'>",
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUaCPO1so+z1AbUk+Yz4QPqxht71v2F48Ph3SvPX9pb1GfR8+zSGyO3ChYr32rgs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
"desired_goal": "[[ 0.00438312 0.12263557 0.19670582]\n [ 0.14086299 -0.08954176 0.01360141]\n [-0.02564871 -0.08105079 0.15575132]\n [ 0.00543616 -0.05532974 0.13640961]]",
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
},
"_episode_num": 0,
"use_sde": true,
"sde_sample_freq": -1,
"_current_progress_remaining": 0.0,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOIO/X8yW07+UhpRSlIwBbJRLMowBdJRHQKS//23azu51fZQoaAZoCWgPQwg1uK0tPC/av5SGlFKUaBVLMmgWR0Ckv79qDbrUdX2UKGgGaAloD0MIscItH0lJw7+UhpRSlGgVSzJoFkdApL99k4FRpHV9lChoBmgJaA9DCI/k8h/Sb82/lIaUUpRoFUsyaBZHQKS/PaZhKDl1fZQoaAZoCWgPQwhsrwW9Nwbgv5SGlFKUaBVLMmgWR0CkwSe2uxKQdX2UKGgGaAloD0MIk8g+yLJgzL+UhpRSlGgVSzJoFkdApMDnsAvL5nV9lChoBmgJaA9DCN/7G7RXn+G/lIaUUpRoFUsyaBZHQKTApfYzzmR1fZQoaAZoCWgPQwhDWfj6Whfpv5SGlFKUaBVLMmgWR0CkwGZckdFOdX2UKGgGaAloD0MIbyu9Nhsr1r+UhpRSlGgVSzJoFkdApMIvGp++d3V9lChoBmgJaA9DCM78ag4QzNm/lIaUUpRoFUsyaBZHQKTB7w97ngZ1fZQoaAZoCWgPQwgcRdYaSu3hv5SGlFKUaBVLMmgWR0Ckwa1oxpL3dX2UKGgGaAloD0MIZmt9kdCW0b+UhpRSlGgVSzJoFkdApMFs+kgwGnV9lChoBmgJaA9DCFg33h0Zq9q/lIaUUpRoFUsyaBZHQKTDOvmozep1fZQoaAZoCWgPQwjJrUm3JXLWv5SGlFKUaBVLMmgWR0CkwvsAeaKDdX2UKGgGaAloD0MIEsDN4sXC0r+UhpRSlGgVSzJoFkdApMK5TOxB3XV9lChoBmgJaA9DCFDicyfYf9q/lIaUUpRoFUsyaBZHQKTCePvrnkl1fZQoaAZoCWgPQwiQMXctIZ/kv5SGlFKUaBVLMmgWR0CkxEMSbpeNdX2UKGgGaAloD0MIGvuSjQdb07+UhpRSlGgVSzJoFkdApMQDIcR15nV9lChoBmgJaA9DCJ5dvvVhvdi/lIaUUpRoFUsyaBZHQKTDwYVIqb11fZQoaAZoCWgPQwjyKJXwhF7Tv5SGlFKUaBVLMmgWR0Ckw4FLvkR0dX2UKGgGaAloD0MIRnpRu18F2r+UhpRSlGgVSzJoFkdApMVAR28qWnV9lChoBmgJaA9DCAt/hjdr8NC/lIaUUpRoFUsyaBZHQKTFAEqUeMh1fZQoaAZoCWgPQwgoLVxWYTPnv5SGlFKUaBVLMmgWR0CkxL51eSjhdX2UKGgGaAloD0MIU7MHWoEh4r+UhpRSlGgVSzJoFkdApMR+C2+fy3V9lChoBmgJaA9DCGcpWU5C6c+/lIaUUpRoFUsyaBZHQKTGUsSTQmh1fZQoaAZoCWgPQwhJoSx8fa3Fv5SGlFKUaBVLMmgWR0CkxhLnkkrxdX2UKGgGaAloD0MI8Il1qnzPzr+UhpRSlGgVSzJoFkdApMXRVCHARHV9lChoBmgJaA9DCAO1GDxM+9G/lIaUUpRoFUsyaBZHQKTFkQXhwVF1fZQoaAZoCWgPQwgJMgIqHEHkv5SGlFKUaBVLMmgWR0Ckx3E3juKGdX2UKGgGaAloD0MIu9QI/Uy927+UhpRSlGgVSzJoFkdApMcxQ79ycXV9lChoBmgJaA9DCKD+s+bHX9y/lIaUUpRoFUsyaBZHQKTG77aZhKF1fZQoaAZoCWgPQwikUYGTbeDMv5SGlFKUaBVLMmgWR0Ckxq9iMHbAdX2UKGgGaAloD0MImS1ZFeEm0r+UhpRSlGgVSzJoFkdApMh2pfhMrXV9lChoBmgJaA9DCDuscMtHUt+/lIaUUpRoFUsyaBZHQKTINlSS/0x1fZQoaAZoCWgPQwhq3nGKjuTMv5SGlFKUaBVLMmgWR0Ckx/SL61stdX2UKGgGaAloD0MINZcbDHVYwb+UhpRSlGgVSzJoFkdApMez/VAiV3V9lChoBmgJaA9DCNv7VBUaiMm/lIaUUpRoFUsyaBZHQKTJhLOiWVx1fZQoaAZoCWgPQwh9k6ZB0Tzav5SGlFKUaBVLMmgWR0CkyUTot+TedX2UKGgGaAloD0MI4UT0a+un3r+UhpRSlGgVSzJoFkdApMkDWqcVg3V9lChoBmgJaA9DCKtZZ3xfXNW/lIaUUpRoFUsyaBZHQKTIwws5GSZ1fZQoaAZoCWgPQwjwTj49tmXSv5SGlFKUaBVLMmgWR0CkyoVfVqetdX2UKGgGaAloD0MIgqs8gbDT5L+UhpRSlGgVSzJoFkdApMpFKujh1nV9lChoBmgJaA9DCPbRqSuf5dy/lIaUUpRoFUsyaBZHQKTKA2SdOIt1fZQoaAZoCWgPQwha12g50EPSv5SGlFKUaBVLMmgWR0CkycLWqcVhdX2UKGgGaAloD0MIX2BWKNL91L+UhpRSlGgVSzJoFkdApMuMYfnwHHV9lChoBmgJaA9DCCxn74y2KtW/lIaUUpRoFUsyaBZHQKTLTEn9ehR1fZQoaAZoCWgPQwhiMH+FzJXRv5SGlFKUaBVLMmgWR0CkywqPwNLEdX2UKGgGaAloD0MIFtukorH22r+UhpRSlGgVSzJoFkdApMrKR2bG3nV9lChoBmgJaA9DCHkj88gfjOW/lIaUUpRoFUsyaBZHQKTMj+nZTQ51fZQoaAZoCWgPQwjnxvSEJR7Kv5SGlFKUaBVLMmgWR0CkzE/iHZbqdX2UKGgGaAloD0MIG76FdePd0r+UhpRSlGgVSzJoFkdApMwOPHT7VXV9lChoBmgJaA9DCBAC8iVUcNq/lIaUUpRoFUsyaBZHQKTLzb6guh91fZQoaAZoCWgPQwjmP6Tfvg7Iv5SGlFKUaBVLMmgWR0CkzbwxN7BwdX2UKGgGaAloD0MIyT1d3bHY4b+UhpRSlGgVSzJoFkdApM18LH+6y3V9lChoBmgJaA9DCEjcY+lDF+C/lIaUUpRoFUsyaBZHQKTNOmaYu011fZQoaAZoCWgPQwg7U+i8xq7lv5SGlFKUaBVLMmgWR0CkzPrLQokSdX2UKGgGaAloD0MI7fXuj/eqzb+UhpRSlGgVSzJoFkdApM6+0NSZSnV9lChoBmgJaA9DCE+y1eWUgNS/lIaUUpRoFUsyaBZHQKTOftQ9A5d1fZQoaAZoCWgPQwhRTrSrkPLDv5SGlFKUaBVLMmgWR0CkzjzkQwsYdX2UKGgGaAloD0MI0911NuSf0L+UhpRSlGgVSzJoFkdApM38ny/bkHV9lChoBmgJaA9DCIF4Xb9gN9i/lIaUUpRoFUsyaBZHQKTPxNSIgvF1fZQoaAZoCWgPQwgfgNQmTu7Rv5SGlFKUaBVLMmgWR0Ckz4TbnHNpdX2UKGgGaAloD0MIVyHlJ9U+07+UhpRSlGgVSzJoFkdApM9DONYKY3V9lChoBmgJaA9DCDV/TGvT2Na/lIaUUpRoFUsyaBZHQKTPAraufVZ1fZQoaAZoCWgPQwg8FtukorHav5SGlFKUaBVLMmgWR0Ck0MQFs54odX2UKGgGaAloD0MIRfXWwFYJyr+UhpRSlGgVSzJoFkdApNCDyBkI5nV9lChoBmgJaA9DCPBRf73Cgty/lIaUUpRoFUsyaBZHQKTQQgeRxLl1fZQoaAZoCWgPQwhtO22NCMbJv5SGlFKUaBVLMmgWR0Ck0AF8ohIOdX2UKGgGaAloD0MI9SoyOiAJz7+UhpRSlGgVSzJoFkdApNHR9AooeHV9lChoBmgJaA9DCDSAt0CC4tS/lIaUUpRoFUsyaBZHQKTRkgYgq3F1fZQoaAZoCWgPQwiU2otoO6bXv5SGlFKUaBVLMmgWR0Ck0VBakhzOdX2UKGgGaAloD0MIroGtEiwOxb+UhpRSlGgVSzJoFkdApNEQCU5dW3V9lChoBmgJaA9DCM0Ew7mGGcS/lIaUUpRoFUsyaBZHQKTS3nmq5sl1fZQoaAZoCWgPQwgIOlrVko7Sv5SGlFKUaBVLMmgWR0Ck0p59mYjTdX2UKGgGaAloD0MI4zeFlQoq2b+UhpRSlGgVSzJoFkdApNJc0Ltu1nV9lChoBmgJaA9DCJrMeFvptdW/lIaUUpRoFUsyaBZHQKTSHJLdvbZ1fZQoaAZoCWgPQwiFeY8zTdjcv5SGlFKUaBVLMmgWR0Ck0+Wm51/2dX2UKGgGaAloD0MI/8wgPrDj0b+UhpRSlGgVSzJoFkdApNOltj0+T3V9lChoBmgJaA9DCOM0RBX+DNu/lIaUUpRoFUsyaBZHQKTTZB1LamJ1fZQoaAZoCWgPQwhX6lkQynvgv5SGlFKUaBVLMmgWR0Ck0yOymhugdX2UKGgGaAloD0MIi1BsBU1L4L+UhpRSlGgVSzJoFkdApNTlHH3lCHV9lChoBmgJaA9DCOIjYkok0dG/lIaUUpRoFUsyaBZHQKTUpSApazN1fZQoaAZoCWgPQwh1VgvsMZHIv5SGlFKUaBVLMmgWR0Ck1GN+kP+XdX2UKGgGaAloD0MIVyQmqOFbzL+UhpRSlGgVSzJoFkdApNQi4YrJ83V9lChoBmgJaA9DCEjDKXPzjdq/lIaUUpRoFUsyaBZHQKTV6blzU7V1fZQoaAZoCWgPQwg1mfG20mvLv5SGlFKUaBVLMmgWR0Ck1anJT2nLdX2UKGgGaAloD0MINpGZC1wexb+UhpRSlGgVSzJoFkdApNVoNkOI7HV9lChoBmgJaA9DCKn26XjMQMu/lIaUUpRoFUsyaBZHQKTVJ8G9pRJ1fZQoaAZoCWgPQwhfX+tSI/TRv5SGlFKUaBVLMmgWR0Ck1vBWHUMHdX2UKGgGaAloD0MI3IKluoCX1r+UhpRSlGgVSzJoFkdApNawhIOH33V9lChoBmgJaA9DCDKwjuOHyue/lIaUUpRoFUsyaBZHQKTWbspG4I91fZQoaAZoCWgPQwjH1jOEY5bXv5SGlFKUaBVLMmgWR0Ck1i45DJEIdX2UKGgGaAloD0MISZ7r+3CQ5b+UhpRSlGgVSzJoFkdApNfvOB19v3V9lChoBmgJaA9DCJesinCT0eK/lIaUUpRoFUsyaBZHQKTXrvAoG6h1fZQoaAZoCWgPQwiILNLEO0Djv5SGlFKUaBVLMmgWR0Ck12z987ZGdX2UKGgGaAloD0MIkV8/xAaL5b+UhpRSlGgVSzJoFkdApNcsngHeJ3V9lChoBmgJaA9DCOAO1CmPbty/lIaUUpRoFUsyaBZHQKTZGqEOAiF1fZQoaAZoCWgPQwg3/dmPFJHbv5SGlFKUaBVLMmgWR0Ck2Npyhi9adX2UKGgGaAloD0MIyJi7lpAP6r+UhpRSlGgVSzJoFkdApNiaGxlg+nV9lChoBmgJaA9DCIvfFFYqqNy/lIaUUpRoFUsyaBZHQKTYWfvF3px1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 31250,
"n_steps": 8,
"gamma": 0.99,
"gae_lambda": 0.9,
"ent_coef": 0.001,
"vf_coef": 0.4,
"max_grad_norm": 0.5,
"normalize_advantage": false
} |