Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import librosa
|
4 |
+
import pickle
|
5 |
+
import tensorflow as tf
|
6 |
+
from sklearn.preprocessing import LabelEncoder
|
7 |
+
|
8 |
+
# Paths to your models and label encoders
|
9 |
+
lstm_speaker_model = '/content/lstm_speaker_model.h5'
|
10 |
+
lstm_gender_model = '/content/lstm_gender_model.h5'
|
11 |
+
lstm_speaker_label = '/content/lstm_speaker_label.pkl'
|
12 |
+
lstm_gender_label = '/content/lstm_gender_label.pkl'
|
13 |
+
|
14 |
+
# ------------------- Feature Extraction -------------------
|
15 |
+
def extract_features(audio_data, max_len=34):
|
16 |
+
"""Extract MFCC features from an audio file."""
|
17 |
+
audio, sr = librosa.load(audio_data, sr=None)
|
18 |
+
|
19 |
+
# Extract MFCC features (13 coefficients)
|
20 |
+
mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=13)
|
21 |
+
mfccs_mean = np.mean(mfccs, axis=1)
|
22 |
+
|
23 |
+
# Spectral Features: Chroma
|
24 |
+
chroma = librosa.feature.chroma_stft(y=audio, sr=sr)
|
25 |
+
chroma_mean = np.mean(chroma, axis=1)
|
26 |
+
|
27 |
+
# Spectral Features: Spectral Contrast
|
28 |
+
spectral_contrast = librosa.feature.spectral_contrast(y=audio, sr=sr)
|
29 |
+
spectral_contrast_mean = np.mean(spectral_contrast, axis=1)
|
30 |
+
|
31 |
+
# Combine only a subset of features (to match the model's expected input size)
|
32 |
+
features = np.hstack([mfccs_mean[:13], chroma_mean[:13], spectral_contrast_mean[:8]])
|
33 |
+
|
34 |
+
# Padding or truncating to fixed length (max_len)
|
35 |
+
if features.shape[0] < max_len:
|
36 |
+
padding = np.zeros((max_len - features.shape[0],))
|
37 |
+
features = np.concatenate((features, padding))
|
38 |
+
elif features.shape[0] > max_len:
|
39 |
+
features = features[:max_len]
|
40 |
+
|
41 |
+
return features
|
42 |
+
|
43 |
+
def preprocess_audio_for_model(audio_data, max_len=34):
|
44 |
+
"""Preprocess audio file for model prediction."""
|
45 |
+
features = extract_features(audio_data, max_len=max_len)
|
46 |
+
features = features.reshape(1, 1, features.shape[0]) # Shape for LSTM: (samples, timesteps, features)
|
47 |
+
return features
|
48 |
+
|
49 |
+
# ------------------- Load Pre-trained Models and Label Encoders -------------------
|
50 |
+
def load_trained_model(model_path='/content/lstm_speaker_model.h5'):
|
51 |
+
"""Load the trained speaker model."""
|
52 |
+
return tf.keras.models.load_model(model_path)
|
53 |
+
|
54 |
+
def load_gender_model(model_path='/content/lstm_gender_model.h5'):
|
55 |
+
"""Load the trained gender model."""
|
56 |
+
return tf.keras.models.load_model(model_path)
|
57 |
+
|
58 |
+
def load_label_encoder(label_encoder_path='/content/lstm_speaker_label.pkl'):
|
59 |
+
"""Load the label encoder for speaker labels."""
|
60 |
+
with open(label_encoder_path, 'rb') as f:
|
61 |
+
label_encoder = pickle.load(f)
|
62 |
+
return label_encoder
|
63 |
+
|
64 |
+
def load_gender_label_encoder(label_encoder_path='/content/lstm_gender_label.pkl'):
|
65 |
+
"""Load the label encoder for gender labels."""
|
66 |
+
with open(label_encoder_path, 'rb') as f:
|
67 |
+
label_encoder = pickle.load(f)
|
68 |
+
return label_encoder
|
69 |
+
|
70 |
+
# ------------------- Predict Top 3 Speakers and Gender -------------------
|
71 |
+
def predict_top_3_speakers_and_gender(audio_data, speaker_model, gender_model, speaker_encoder, gender_encoder, max_len=34):
|
72 |
+
"""Predict the top 3 speakers and gender from an uploaded audio file."""
|
73 |
+
features = preprocess_audio_for_model(audio_data, max_len=max_len)
|
74 |
+
|
75 |
+
# Predict the speaker probabilities
|
76 |
+
speaker_pred = speaker_model.predict(features)
|
77 |
+
|
78 |
+
# Get top 3 speakers
|
79 |
+
top_3_speakers_idx = np.argsort(speaker_pred[0])[::-1][:3]
|
80 |
+
top_3_speakers_probs = speaker_pred[0][top_3_speakers_idx] * 100 # Convert to percentages
|
81 |
+
top_3_speakers = speaker_encoder.inverse_transform(top_3_speakers_idx)
|
82 |
+
|
83 |
+
# Predict the gender
|
84 |
+
gender_pred = gender_model.predict(features) # Gender model needs 1D features
|
85 |
+
predicted_gender = gender_encoder.inverse_transform([np.argmax(gender_pred)])[0]
|
86 |
+
|
87 |
+
return top_3_speakers, top_3_speakers_probs, predicted_gender
|
88 |
+
|
89 |
+
# ------------------- Gradio Interface -------------------
|
90 |
+
def gradio_interface(audio):
|
91 |
+
# Load the trained models and label encoders
|
92 |
+
speaker_model = load_trained_model(lstm_speaker_model) # Speaker model
|
93 |
+
gender_model = load_gender_model(lstm_gender_model) # Gender model
|
94 |
+
speaker_encoder = load_label_encoder(lstm_speaker_label) # Speaker label encoder
|
95 |
+
gender_encoder = load_gender_label_encoder(lstm_gender_label) # Gender label encoder
|
96 |
+
|
97 |
+
# Predict the top 3 speakers and gender from the uploaded audio file
|
98 |
+
top_3_speakers, top_3_speakers_probs, predicted_gender = predict_top_3_speakers_and_gender(
|
99 |
+
audio, speaker_model, gender_model, speaker_encoder, gender_encoder
|
100 |
+
)
|
101 |
+
|
102 |
+
# Return results as a formatted string for Gradio output
|
103 |
+
result = f"The top 3 predicted speakers are:\n"
|
104 |
+
for speaker, prob in zip(top_3_speakers, top_3_speakers_probs):
|
105 |
+
result += f"{speaker}: {prob:.2f}%\n"
|
106 |
+
|
107 |
+
result += f"\nThe predicted gender is: {predicted_gender}"
|
108 |
+
|
109 |
+
return result
|
110 |
+
|
111 |
+
# Gradio interface creation
|
112 |
+
demo = gr.Interface(
|
113 |
+
fn=gradio_interface, # The function to predict speaker and gender
|
114 |
+
inputs=gr.Audio(type="filepath"), # Audio input (file upload)
|
115 |
+
outputs="text", # Output the prediction result as text
|
116 |
+
live=False, # Disable live feedback
|
117 |
+
title="Speaker and Gender Prediction",
|
118 |
+
description="Upload or record an audio file to predict the top 3 speakers and gender.",
|
119 |
+
allow_flagging="never", # Disable flagging
|
120 |
+
theme="compact", # Set the theme
|
121 |
+
css="""
|
122 |
+
body {
|
123 |
+
margin: 0;
|
124 |
+
padding: 0;
|
125 |
+
background-color: #f1f1f1;
|
126 |
+
font-family: 'Roboto', sans-serif;
|
127 |
+
}
|
128 |
+
|
129 |
+
.gradio-container {
|
130 |
+
background-color: #ffffff;
|
131 |
+
padding: 20px;
|
132 |
+
border-radius: 8px;
|
133 |
+
box-shadow: 0px 4px 6px rgba(0, 0, 0, 0.1);
|
134 |
+
}
|
135 |
+
|
136 |
+
h1, p {
|
137 |
+
color: #333;
|
138 |
+
}
|
139 |
+
"""
|
140 |
+
)
|
141 |
+
|
142 |
+
# Launch Gradio app
|
143 |
+
demo.launch()
|