Second-agent / config.json
Serotina's picture
Uproad First Agent using PPO with environment LunarLander
8af433a
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a60d3487f40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a60d3498040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a60d34980d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a60d3498160>", "_build": "<function ActorCriticPolicy._build at 0x7a60d34981f0>", "forward": "<function ActorCriticPolicy.forward at 0x7a60d3498280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a60d3498310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a60d34983a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a60d3498430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a60d34984c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a60d3498550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a60d34985e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a60d3489840>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVXwAAAAAAAAB9lCiMCG5ldF9hcmNolH2UKIwCcGmUXZRLQGGMAnZmlF2US0BhdYwNYWN0aXZhdGlvbl9mbpSMG3RvcmNoLm5uLm1vZHVsZXMuYWN0aXZhdGlvbpSMBFRhbmiUk5R1Lg==", "net_arch": {"pi": [64], "vf": [64]}, "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>"}, "num_timesteps": 1000448, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693409656490016413, "learning_rate": 0.006521081455379553, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPXlzu4Fre5EscNOROcWbVaV8e6PnkkuAAAgD8AAIA/mpMvPa5Zn7qzyZe7URkBN3stmDo6qGW2AACAPwAAgD9aAyi+OZs6P0ywPL2rtqi+PC1qvZXkEz0AAAAAAAAAAPNo+j0qCq4+zqmpvRJrdr6d9e87UrvNPAAAAAAAAAAARq8zvih+p7wylka6G3KzuAxmET7DgoY5AACAPwAAgD/NV3C9XHN6ulDe8Dorv9g16cgiuXqdDLoAAIA/AACAPwAFQT1c72G6tuMIvLvePrZisX67LIusNQAAgD8AAIA/M7YBPUhtgLqexU+4q0zWMf5k+bro5m83AACAPwAAgD/aArI9j/o/uluwErt7NUc4Bf0lu7JlwzkAAIA/AACAP1ClTr4pvnU7s/aavBCGlDwvyIO9UoF1PQAAgD8AAIA/msTkvI/mKbpP5IC68RPMtbqDNznzjTc1AACAPwAAgD9mMpi782GrP/kQvLw2CNG+qG0xuS1UyLsAAAAAAAAAADOrBrzSB5i7rm0LvTXRKj1btwk9jlwNvgAAgD8AAIA/5p6xPRT2rjkZNRa6h45htlE0r7t2Fzc5AACAPwAAAAAz1SQ8e3SbuDDFYzrpDwg2Vt7nO+iiiLkAAIA/AACAP9rEsT1cHz66Sd2CuCGZujPHVAO7S4SdNwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFLhXOnl4mMAWyUTQkBjAF0lEdAlwxazu4PPXV9lChoBkdAct3Ew35vcmgHTQ4BaAhHQJcPHxoZhrp1fZQoaAZHQHDfkaMrEtNoB00IAWgIR0CXEw8pkPMCdX2UKGgGR0Bw9vMY/FBIaAdNCQFoCEdAlxPIMKCxvHV9lChoBkdAbNESW7e2u2gHS/hoCEdAlxPIsEq2B3V9lChoBkdAcd6icXm/32gHTQgBaAhHQJcT9XdTHbR1fZQoaAZHQHF0b08NhE1oB00QAWgIR0CXFAm8ujASdX2UKGgGR0ByYxw2l2vCaAdL/mgIR0CXGDie/YapdX2UKGgGR0ByD0Y2sJY1aAdL8mgIR0CXGJhvitJWdX2UKGgGR0BxI5DWsijdaAdNDQFoCEdAlxj6yOaOP3V9lChoBkdAcfr32EkB0mgHS/VoCEdAlxzuZssQNHV9lChoBkdAbt9DhtLteGgHS/toCEdAlx088YAKfHV9lChoBkdAcTxcwg1WKmgHS/BoCEdAlx16FRHf/HV9lChoBkdAcsM9G7SRbWgHTRoBaAhHQJcdoXpGFzx1fZQoaAZHQHJJ80Ltu1poB0v8aAhHQJcdr4tYjjd1fZQoaAZHQHOFrtmcvuhoB00oAWgIR0CXHbjIq9XcdX2UKGgGR0ByqyP91loUaAdL8GgIR0CXHh17IDHPdX2UKGgGR0ByonRzBAObaAdNOAFoCEdAlx5HyZrpJXV9lChoBkdAcFg1f3N9pmgHTfcBaAhHQJdM09nscAB1fZQoaAZHQG4a4cvM8oxoB01YAmgIR0CXTp3Ehq0udX2UKGgGR0BxhMZWJaaDaAdNWwJoCEdAl1STPSlWO3V9lChoBkdAcfnRJ2+wkmgHTd8CaAhHQJdZMIomXw91fZQoaAZHQGsNt9QXQ+loB00HA2gIR0CXWiEDQqqfdX2UKGgGR0BxHGAJ9iMHaAdN+wJoCEdAl1vMs6JZXHV9lChoBkdAb7vHCoCMgmgHTXgCaAhHQJdb/hGYrrh1fZQoaAZHQGuJjWbwz+FoB00QA2gIR0CXXOpPykKvdX2UKGgGR0BxAfnLaEi/aAdN7AJoCEdAl2KQJLM9sHV9lChoBkdATOsTBZZB9mgHS81oCEdAl2L7B0p3HXV9lChoBkdAYt1E5Qxes2gHTegDaAhHQJdzzq6e5Fx1fZQoaAZHQFyyHck+otNoB03oA2gIR0CXeankDIRzdX2UKGgGR0Blle1ndweeaAdN6ANoCEdAl3unxjJ+2HV9lChoBkdAZo9/axoqTmgHTegDaAhHQJd+86ySmqJ1fZQoaAZHQGT+Y7A+IM1oB03oA2gIR0CXfyVW0Z3tdX2UKGgGR0BlfqInBtUGaAdN6ANoCEdAl39SdrftQnV9lChoBkdAZOUf6oESumgHTegDaAhHQJeAMMx46fd1fZQoaAZHQHLEIRRMvh9oB03CAWgIR0CXhHOavzOHdX2UKGgGR0Bwc4CW/rSmaAdN7gFoCEdAl4li4jKPn3V9lChoBkdAcs00+C9RJmgHTfABaAhHQJeJkEpy6tl1fZQoaAZHQHCkYA0bcXZoB00SAWgIR0CXiayfthNNdX2UKGgGR0BxmNmEoOQRaAdN6QFoCEdAl4nY95hScnV9lChoBkdAca8/wiJO32gHTXgCaAhHQJeKJV6u4gB1fZQoaAZHQHBgHGbTc7BoB01yAmgIR0CXjlz6ab4KdX2UKGgGR0BwtBUipvP1aAdL+GgIR0CXj2dTo+wDdX2UKGgGR0By0QJ5VwPzaAdNFwFoCEdAl5IcbFS88XV9lChoBkdAcUZNLDhtL2gHTTgCaAhHQJeS8exOclR1fZQoaAZHQHFsU4rBj4JoB00eAWgIR0CXk4YAbQ1KdX2UKGgGR0BwA+MbWEsbaAdNCgFoCEdAl5OQXdj5K3V9lChoBkdAbUx07r9l3GgHTTIBaAhHQJeT+fDk2gp1fZQoaAZHQHKyr0e2d/doB019AWgIR0CXl+UTL4etdX2UKGgGR0Bwe5HkLhJiaAdNewJoCEdAl5hdcjZ+QXV9lChoBkdAcb9pn6Eal2gHTRcBaAhHQJeY5fE4vOB1fZQoaAZHQHESCnYQJ5VoB0v5aAhHQJedvnB+F111fZQoaAZHQHInxwVCXyBoB00FAWgIR0CXnggXdj5LdX2UKGgGR0BtwHeUILPVaAdNBgFoCEdAl55XWrfce3V9lChoBkdAcu4lhPTG52gHS/loCEdAl55reVLSNXV9lChoBkdAcysbY9Pk72gHTQ8BaAhHQJee1V81Gb11fZQoaAZHQG3xdlEqlP9oB00CAWgIR0CXpAbnHNordX2UKGgGR0Bw76mHgxagaAdNCgFoCEdAl6jpNbkfcXV9lChoBkdAbRyee4Cp32gHS/JoCEdAl6kQ35vcanV9lChoBkdASnGgctGutGgHS8VoCEdAl6ka+SKWLXV9lChoBkdAbehwS8J2MmgHS/FoCEdAl6lX9vS+g3V9lChoBkdAcbvl0HQhOmgHS/doCEdAl6l4j0L+gnV9lChoBkdAcjT0Rvm5lWgHTRoBaAhHQJepkD9wWFh1fZQoaAZHQHGkQ6ZH/cZoB00cAWgIR0CXrQwZwXImdX2UKGgGR0BvS/pr1uiwaAdL/2gIR0CXrTn1WbPQdX2UKGgGR0BudMCV8kUsaAdL72gIR0CXrTYPGyX2dX2UKGgGR0BlsJrrPdEcaAdN6ANoCEdAl62eR9w3pHV9lChoBkdAb77kDIRywWgHS/RoCEdAl7Cfu5SWJXV9lChoBkdAcWpuYhMaj2gHS/loCEdAl7Dvq1PWQXV9lChoBkdAbr4qOtGNJmgHS/RoCEdAl7ERHXmNi3V9lChoBkdAcWoM2FWXC2gHS/5oCEdAl7GK/M4cWHV9lChoBkdAbpt3j+717WgHTQ8BaAhHQJexlXvH93t1fZQoaAZHQHBTQ7DEWIpoB0v0aAhHQJe0yxoqTbF1fZQoaAZHQG9Vww9JSR9oB0v6aAhHQJe4USamXPZ1fZQoaAZHQG9optSAH3VoB0v9aAhHQJe4lBRhttR1fZQoaAZHQHJKNsFdLQJoB0v0aAhHQJe4nHvMKTl1fZQoaAZHQG4CuNxVAA1oB0vyaAhHQJe4sOUdJat1fZQoaAZHQG9Ufu1F6RhoB00cAWgIR0CXudQJ5VwQdX2UKGgGR0BuRPsRg7YDaAdL72gIR0CXudevIOpbdX2UKGgGR0BxvKWWyC4CaAdNDAFoCEdAl70PoaDPGHV9lChoBkdAcr3khRqGlGgHTRcBaAhHQJe9XGtITXd1fZQoaAZHQHGSK8Yht+FoB0vwaAhHQJe9jm8ujAV1fZQoaAZHQHD5TPnjhk1oB00OAWgIR0CXvZQQtjCpdX2UKGgGR0Bv/nU6PsAvaAdL7mgIR0CXwM3974SIdX2UKGgGR0Bxv78EV32VaAdNGQFoCEdAl8E4+8oQWnV9lChoBkdAb0A2gFotc2gHS/xoCEdAl8FAe/5+IHV9lChoBkdAcnr3TNMXamgHTcsBaAhHQJfEuCWeHzp1fZQoaAZHQG2EJIczZYhoB00IAWgIR0CXxNR+z+m4dX2UKGgGR0BwlFj3Ehq1aAdL+WgIR0CXyHWN3np0dX2UKGgGR0BzYm3x4IKMaAdNDQFoCEdAl8if/WDpT3V9lChoBkdAcWXpz90ihWgHTQYBaAhHQJfItgKF7D51fZQoaAZHQHHwpntfG+9oB0vvaAhHQJfJaa7VawF1fZQoaAZHQHAwYgFHJ91oB00AAWgIR0CXydt+TeO5dX2UKGgGR0BwvlnWattAaAdL5mgIR0CXzNE5QxetdX2UKGgGR0ByI+TdLxqgaAdNAAFoCEdAl804SQHRkXV9lChoBkdAbN3t2LYPG2gHS/RoCEdAl811uJk5InV9lChoBkdAcY27XQMQVmgHS/poCEdAl82ZxFRYR3V9lChoBkdAcY6s9jgAImgHTR8BaAhHQJfSmfWcz691fZQoaAZHQHLYtB8hLXdoB00JAWgIR0CX12Tj/+85dX2UKGgGR0BxBVLlFMIvaAdNIgFoCEdAl96/rjYI0XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 9770, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 64, "gamma": 0.9997300164363131, "gae_lambda": 0.935604198994656, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 1.6227933336837967, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz96tdl5XdQChZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}