Uproad First Agent using PPO with environment LunarLander
Browse files- README.md +37 -0
- Second-Agent.zip +3 -0
- Second-Agent/_stable_baselines3_version +1 -0
- Second-Agent/data +111 -0
- Second-Agent/policy.optimizer.pth +3 -0
- Second-Agent/policy.pth +3 -0
- Second-Agent/pytorch_variables.pth +3 -0
- Second-Agent/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -227.92 +/- 47.97
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
Second-Agent.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8a6fe54f01e50bd5469d8297bdcbc8446cfae93685e0e8b3f42ed314b6bef9a
|
3 |
+
size 42936
|
Second-Agent/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
Second-Agent/data
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e14936217e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e1493621870>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e1493621900>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e1493621990>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e1493621a20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e1493621ab0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e1493621b40>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e1493621bd0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e1493621c60>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e1493621cf0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e1493621d80>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e1493621e10>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e1493624b80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVXwAAAAAAAAB9lCiMCG5ldF9hcmNolH2UKIwCcGmUXZRLQGGMAnZmlF2US0BhdYwNYWN0aXZhdGlvbl9mbpSMG3RvcmNoLm5uLm1vZHVsZXMuYWN0aXZhdGlvbpSMBFRhbmiUk5R1Lg==",
|
26 |
+
"net_arch": {
|
27 |
+
"pi": [
|
28 |
+
64
|
29 |
+
],
|
30 |
+
"vf": [
|
31 |
+
64
|
32 |
+
]
|
33 |
+
},
|
34 |
+
"activation_fn": "<class 'torch.nn.modules.activation.Tanh'>"
|
35 |
+
},
|
36 |
+
"num_timesteps": 1001472,
|
37 |
+
"_total_timesteps": 1000000.0,
|
38 |
+
"_num_timesteps_at_start": 0,
|
39 |
+
"seed": null,
|
40 |
+
"action_noise": null,
|
41 |
+
"start_time": 1693400424497999124,
|
42 |
+
"learning_rate": 0.017296190310658224,
|
43 |
+
"tensorboard_log": null,
|
44 |
+
"_last_obs": {
|
45 |
+
":type:": "<class 'numpy.ndarray'>",
|
46 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACBUr9PTGI/mBw6vyxKAr7wINe8LRYKPQAAAAAAAAAA3vOtvm6ZoT86Uy2/WkQfvgSujz2y3tG8AAAAAAAAAAA5oDC/Xi6SPzMjY78QBji+i5hevKZe8b0AAAAAAAAAABoriL01ILc/9wYtvm5mkr30vAY+HdHqPQAAAAAAAAAAzSJ7vNOEsj+C+US/CzS2vnaHljxyyUA+AAAAAAAAAACNrJk+qs2dPz4Q3T4946O9zd1SPY34cz0AAAAAAAAAAJpl5TwN/rU/zkc1P0JXpj3RrAK9qm4ivgAAAAAAAAAAbdZKvnB7kD+2U4y+ou6OvSZurz2CCIs9AAAAAAAAAADzICm/MoWNP7qXMb/ty/C9L2OBPTv+XjwAAAAAAAAAADqOBb6F3XI/xWVav0pr9r0VQxc9Nm80vgAAAAAAAAAAMBvBPqzRhj/WAkW/ubeYvUjYDD8JDCK9AAAAAAAAAABgJCi+P36zP8c8F7+3guO9C7pGPj20CT4AAAAAAAAAAE7txr7rRlM/NMGfvxE4Fb5rFTK+PQ4RPgAAAAAAAAAAfSLJPpPulz998bk+q6XPvTj3Fj5lmdI9AAAAAAAAAAC4a+u+DmiVPwieUL82JTC+SaNNPbCvCT0AAAAAAAAAADPmXD1+fKw/PJpHP0DltL4UUYO9smhCvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
47 |
+
},
|
48 |
+
"_last_episode_starts": {
|
49 |
+
":type:": "<class 'numpy.ndarray'>",
|
50 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
51 |
+
},
|
52 |
+
"_last_original_obs": null,
|
53 |
+
"_episode_num": 0,
|
54 |
+
"use_sde": false,
|
55 |
+
"sde_sample_freq": -1,
|
56 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
57 |
+
"_stats_window_size": 100,
|
58 |
+
"ep_info_buffer": {
|
59 |
+
":type:": "<class 'collections.deque'>",
|
60 |
+
":serialized:": "gAWVBwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHwnSX2M85mMAWyUTQgBjAF0lEdAmTqs7ZFoc3V9lChoBkfAc/oMMqjJuGgHTTABaAhHQJk7i2Zy+6B1fZQoaAZHwHB8JUYKpkxoB00VAWgIR0CZPGpDNQj2dX2UKGgGR8B0P5O6/ZdwaAdNSwFoCEdAmTytNFjNIXV9lChoBkfAY6rftQbdamgHS5loCEdAmUPKkdmxuHV9lChoBkfAb3XIOH31z2gHTbQBaAhHQJlD3nr6ciJ1fZQoaAZHwGc2CiAUcn5oB0upaAhHQJlD2pkwvg51fZQoaAZHwHlswqVhTfloB00LAWgIR0CZRBnCfpUxdX2UKGgGR8B3066NEPUbaAdNDwFoCEdAmURRz3h4uHV9lChoBkfAYLH5E+gUUWgHS2toCEdAmUTuruIAO3V9lChoBkfAZw2tkFwDNmgHS6JoCEdAmUUjBdld1XV9lChoBkfAZjaK2KEWZmgHS4BoCEdAmUXTOxB3R3V9lChoBkfAbTy9cry1/mgHTVIBaAhHQJlGqJ0nw5N1fZQoaAZHwGMjz9sJpnJoB0tuaAhHQJlGt1uBMBZ1fZQoaAZHwGklsYdhiLFoB0uIaAhHQJlG2pwS8J51fZQoaAZHwGc8Y0uUUwloB0tyaAhHQJlHayB06o51fZQoaAZHwGCKej/MnqpoB0u0aAhHQJlHlOCXhOx1fZQoaAZHwGmCUz9CNS9oB02FAWgIR0CZTelwcYIjdX2UKGgGR8B1Mpnxri2laAdNzQFoCEdAmU5SnDR+jXV9lChoBkfAcB9VktmL+GgHS8RoCEdAmU6Tz3AVPHV9lChoBkfAakQCjDbaiGgHS2hoCEdAmU8ZEc81XXV9lChoBkfAdKkgbp/wzGgHTU8BaAhHQJlPMwXZXdV1fZQoaAZHwGXq6PS2H+JoB0u4aAhHQJlPW1stTUB1fZQoaAZHwGDAoFeOXE9oB0uUaAhHQJlPwkJKJ2t1fZQoaAZHwGtgHCO3lS1oB0ubaAhHQJlPyj/Mnqp1fZQoaAZHwHASkuUUwi9oB0vIaAhHQJlUxy/9Hc11fZQoaAZHwG4I6Mir1dxoB00DAWgIR0CZVQJoTPB0dX2UKGgGR8BwG71L8JlbaAdLxWgIR0CZVVeaa1CxdX2UKGgGR8BqLVLHuJDWaAdNJQFoCEdAmVVrXxvvSnV9lChoBkfAa6bxwQ176mgHTTkBaAhHQJlVmIvalDZ1fZQoaAZHwG4nOrIYFaBoB00IAWgIR0CZVZcBEKE4dX2UKGgGR8Bqce+sYEW7aAdLwWgIR0CZVcrEtNBXdX2UKGgGR8BoLXuiN83NaAdLnmgIR0CZVgJtBOYZdX2UKGgGR8BjneFvhqCZaAdLbGgIR0CZVhuBtk4FdX2UKGgGR8BlqfzBhx5taAdLkmgIR0CZViDGtITXdX2UKGgGR8BsgH82rGR3aAdNSQFoCEdAmVY8l5WzW3V9lChoBkfAZVXEDyOJcmgHS31oCEdAmVZvHktEonV9lChoBkfAZqNSUkfLcWgHS2RoCEdAmVuPo3aSLnV9lChoBkfAZiTy3CsOomgHS7VoCEdAmVvB02cawXV9lChoBkfAZIGwfyPMjmgHS3doCEdAmVwhVuJk5XV9lChoBkfAaBmXEZR8+mgHS6doCEdAmVxiwwCbMHV9lChoBkfAYzWRKYiPhmgHS4BoCEdAmVyGJm/WUnV9lChoBkfAYEuBkI5YHWgHS39oCEdAmVzJbpu/DnV9lChoBkfAZgS/Yao/A2gHS4FoCEdAmV1y9M9KVnV9lChoBkfActeEyckMTmgHS/ZoCEdAmV2r6k6903V9lChoBkfAcoZCI1tO22gHS89oCEdAmV3fxH5JsnV9lChoBkfAcdcz8P4EfWgHS8ZoCEdAmV3dVBD5TXV9lChoBkfAZtDEaVD8cmgHTTkBaAhHQJlityMkyDZ1fZQoaAZHwGSYZ6Uqx1RoB0v1aAhHQJlkmkFfReF1fZQoaAZHwGJ5GVzIV/NoB01TAWgIR0CZZK2VE/jbdX2UKGgGR8Bf53JHRTjvaAdLkWgIR0CZZP+K0lZ6dX2UKGgGR8Biut4X40uUaAdNJwFoCEdAmWXJ4rz5GnV9lChoBkfAYXRd2Pkq+mgHS5RoCEdAmWsDRx95QnV9lChoBkfAWuD9Q40dimgHS5poCEdAmWsxpg1FY3V9lChoBkfAZo4XKKYRd2gHS5NoCEdAmWtQZOzpo3V9lChoBkfAdU5IkJKJ22gHTRABaAhHQJlrcPd2xIJ1fZQoaAZHwF5fmxt52QpoB0vmaAhHQJlrergflp51fZQoaAZHwFxqGFSKm9BoB01KAWgIR0CZa3VclgMMdX2UKGgGR8BflTjm0VrRaAdNFgFoCEdAmWvZlJ6IFnV9lChoBkfAYn2rSVnmJWgHTaoBaAhHQJlseFlCkXV1fZQoaAZHwGE3AoXsPatoB004AWgIR0CZbT1s+FDfdX2UKGgGR8BfVCoXKr7waAdLl2gIR0CZdQbEP1+RdX2UKGgGR8BjTLTnaFmGaAdL6GgIR0CZdRhpxm03dX2UKGgGR8BiDc7MgU1yaAdLmWgIR0CZdSXT3IuHdX2UKGgGR8Bn+AmReTmoaAdLs2gIR0CZdkICU5dXdX2UKGgGR8BodL7IkqtpaAdLcGgIR0CZdm4ku6ErdX2UKGgGR8Bq97RUm2LHaAdLzWgIR0CZdwznA6+4dX2UKGgGR8BkHt7v5P/JaAdLnWgIR0CZdw0nw5NodX2UKGgGR8Bxx8bR4QjEaAdNDAFoCEdAmXdfjwQUYnV9lChoBkfAaVTM9KVY6mgHTQQBaAhHQJl4MFFDv3J1fZQoaAZHwHEv3FcY64loB00wAWgIR0CZeF/336AOdX2UKGgGR8Bp+f49HMEBaAdL12gIR0CZfw9xp+MIdX2UKGgGR8BnW2N70Fr3aAdNmgFoCEdAmX9h0uDjBHV9lChoBkfAcd/SPluFYmgHTSEBaAhHQJmAs7ihnJ11fZQoaAZHwGfUy0Sh8IBoB031AWgIR0CZgOVIqbz9dX2UKGgGR8BxWwCq6vq1aAdNIQFoCEdAmYEMyad+X3V9lChoBkfAal2EGqxTsWgHTdsBaAhHQJmBX5vcafl1fZQoaAZHwGhsQ5eZ5RloB0t5aAhHQJmB9t3wCr91fZQoaAZHwGgC53s5XEJoB0tcaAhHQJmCG6STyJ91fZQoaAZHwGkhJbt7a7FoB0uQaAhHQJmCmhnJ1aJ1fZQoaAZHwGVlpvgm7atoB0vFaAhHQJmC21b7j1h1fZQoaAZHwGkLpkoWpIdoB0tYaAhHQJmJVxdY4hl1fZQoaAZHwGuqTsY2sJZoB0u/aAhHQJmJZSOzY291fZQoaAZHwH4EE6PsAvNoB0vTaAhHQJmJ26+WWyF1fZQoaAZHwGj2dVFQVKxoB0vQaAhHQJmKyjM3ZPF1fZQoaAZHwGq49f1HvttoB00dAWgIR0CZiszf779AdX2UKGgGR8BaXCc5Ke05aAdLn2gIR0CZizN0vGp/dX2UKGgGR8Bqpk+/xlQNaAdLgWgIR0CZi5bRF7UodX2UKGgGR8BlGXxOLzf8aAdLs2gIR0CZkMGJvYOEdX2UKGgGR8BkspxYJVsDaAdLiGgIR0CZkO53C9AYdX2UKGgGR8BjqZpWV/tqaAdNJAFoCEdAmZE3Rw6ySnV9lChoBkfAW3N1Ng0CR2gHS+ZoCEdAmZE1AE+xGHV9lChoBkfAZKMXWvr4WWgHTUMBaAhHQJmRgu14Pf91fZQoaAZHwGchrQokRjBoB0uqaAhHQJmR0AggX/J1fZQoaAZHwGEQ08V58jRoB006AWgIR0CZkiDNyHVPdX2UKGgGR8BnAfCsOoYOaAdNogFoCEdAmZKOUD+zdHV9lChoBkfAY2y8Md92HWgHS39oCEdAmZK7I1cdHXV9lChoBkfAY4wYtQKrrGgHTUoBaAhHQJmTPS5RTCN1fZQoaAZHwGSeYX40uUVoB0uLaAhHQJmTVqfvnbJ1fZQoaAZHwGZAY/mknCxoB00FAWgIR0CZk2LBbfP5dWUu"
|
61 |
+
},
|
62 |
+
"ep_success_buffer": {
|
63 |
+
":type:": "<class 'collections.deque'>",
|
64 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
65 |
+
},
|
66 |
+
"_n_updates": 4890,
|
67 |
+
"observation_space": {
|
68 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
69 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
70 |
+
"dtype": "float32",
|
71 |
+
"bounded_below": "[ True True True True True True True True]",
|
72 |
+
"bounded_above": "[ True True True True True True True True]",
|
73 |
+
"_shape": [
|
74 |
+
8
|
75 |
+
],
|
76 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
77 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
78 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
79 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
80 |
+
"_np_random": null
|
81 |
+
},
|
82 |
+
"action_space": {
|
83 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
84 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
85 |
+
"n": "4",
|
86 |
+
"start": "0",
|
87 |
+
"_shape": [],
|
88 |
+
"dtype": "int64",
|
89 |
+
"_np_random": null
|
90 |
+
},
|
91 |
+
"n_envs": 16,
|
92 |
+
"n_steps": 128,
|
93 |
+
"gamma": 0.9974465612383338,
|
94 |
+
"gae_lambda": 0.95,
|
95 |
+
"ent_coef": 0.0,
|
96 |
+
"vf_coef": 0.5,
|
97 |
+
"max_grad_norm": 0.5453819858820357,
|
98 |
+
"batch_size": 64,
|
99 |
+
"n_epochs": 10,
|
100 |
+
"clip_range": {
|
101 |
+
":type:": "<class 'function'>",
|
102 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
103 |
+
},
|
104 |
+
"clip_range_vf": null,
|
105 |
+
"normalize_advantage": true,
|
106 |
+
"target_kl": null,
|
107 |
+
"lr_schedule": {
|
108 |
+
":type:": "<class 'function'>",
|
109 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+Rtheu6y5khZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
110 |
+
}
|
111 |
+
}
|
Second-Agent/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0df3c871c6f3b0ce735584048eae387495464d5d6d918ce642323acedaea5e7e
|
3 |
+
size 18205
|
Second-Agent/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb646e439a04fb276aa649322cc7b19406d3017283314a577f529c737312302d
|
3 |
+
size 8847
|
Second-Agent/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
Second-Agent/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e14936217e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e1493621870>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e1493621900>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e1493621990>", "_build": "<function ActorCriticPolicy._build at 0x7e1493621a20>", "forward": "<function ActorCriticPolicy.forward at 0x7e1493621ab0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e1493621b40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e1493621bd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e1493621c60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e1493621cf0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e1493621d80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e1493621e10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e1493624b80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVXwAAAAAAAAB9lCiMCG5ldF9hcmNolH2UKIwCcGmUXZRLQGGMAnZmlF2US0BhdYwNYWN0aXZhdGlvbl9mbpSMG3RvcmNoLm5uLm1vZHVsZXMuYWN0aXZhdGlvbpSMBFRhbmiUk5R1Lg==", "net_arch": {"pi": [64], "vf": [64]}, "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>"}, "num_timesteps": 1001472, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693400424497999124, "learning_rate": 0.017296190310658224, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACBUr9PTGI/mBw6vyxKAr7wINe8LRYKPQAAAAAAAAAA3vOtvm6ZoT86Uy2/WkQfvgSujz2y3tG8AAAAAAAAAAA5oDC/Xi6SPzMjY78QBji+i5hevKZe8b0AAAAAAAAAABoriL01ILc/9wYtvm5mkr30vAY+HdHqPQAAAAAAAAAAzSJ7vNOEsj+C+US/CzS2vnaHljxyyUA+AAAAAAAAAACNrJk+qs2dPz4Q3T4946O9zd1SPY34cz0AAAAAAAAAAJpl5TwN/rU/zkc1P0JXpj3RrAK9qm4ivgAAAAAAAAAAbdZKvnB7kD+2U4y+ou6OvSZurz2CCIs9AAAAAAAAAADzICm/MoWNP7qXMb/ty/C9L2OBPTv+XjwAAAAAAAAAADqOBb6F3XI/xWVav0pr9r0VQxc9Nm80vgAAAAAAAAAAMBvBPqzRhj/WAkW/ubeYvUjYDD8JDCK9AAAAAAAAAABgJCi+P36zP8c8F7+3guO9C7pGPj20CT4AAAAAAAAAAE7txr7rRlM/NMGfvxE4Fb5rFTK+PQ4RPgAAAAAAAAAAfSLJPpPulz998bk+q6XPvTj3Fj5lmdI9AAAAAAAAAAC4a+u+DmiVPwieUL82JTC+SaNNPbCvCT0AAAAAAAAAADPmXD1+fKw/PJpHP0DltL4UUYO9smhCvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVBwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHwnSX2M85mMAWyUTQgBjAF0lEdAmTqs7ZFoc3V9lChoBkfAc/oMMqjJuGgHTTABaAhHQJk7i2Zy+6B1fZQoaAZHwHB8JUYKpkxoB00VAWgIR0CZPGpDNQj2dX2UKGgGR8B0P5O6/ZdwaAdNSwFoCEdAmTytNFjNIXV9lChoBkfAY6rftQbdamgHS5loCEdAmUPKkdmxuHV9lChoBkfAb3XIOH31z2gHTbQBaAhHQJlD3nr6ciJ1fZQoaAZHwGc2CiAUcn5oB0upaAhHQJlD2pkwvg51fZQoaAZHwHlswqVhTfloB00LAWgIR0CZRBnCfpUxdX2UKGgGR8B3066NEPUbaAdNDwFoCEdAmURRz3h4uHV9lChoBkfAYLH5E+gUUWgHS2toCEdAmUTuruIAO3V9lChoBkfAZw2tkFwDNmgHS6JoCEdAmUUjBdld1XV9lChoBkfAZjaK2KEWZmgHS4BoCEdAmUXTOxB3R3V9lChoBkfAbTy9cry1/mgHTVIBaAhHQJlGqJ0nw5N1fZQoaAZHwGMjz9sJpnJoB0tuaAhHQJlGt1uBMBZ1fZQoaAZHwGklsYdhiLFoB0uIaAhHQJlG2pwS8J51fZQoaAZHwGc8Y0uUUwloB0tyaAhHQJlHayB06o51fZQoaAZHwGCKej/MnqpoB0u0aAhHQJlHlOCXhOx1fZQoaAZHwGmCUz9CNS9oB02FAWgIR0CZTelwcYIjdX2UKGgGR8B1Mpnxri2laAdNzQFoCEdAmU5SnDR+jXV9lChoBkfAcB9VktmL+GgHS8RoCEdAmU6Tz3AVPHV9lChoBkfAakQCjDbaiGgHS2hoCEdAmU8ZEc81XXV9lChoBkfAdKkgbp/wzGgHTU8BaAhHQJlPMwXZXdV1fZQoaAZHwGXq6PS2H+JoB0u4aAhHQJlPW1stTUB1fZQoaAZHwGDAoFeOXE9oB0uUaAhHQJlPwkJKJ2t1fZQoaAZHwGtgHCO3lS1oB0ubaAhHQJlPyj/Mnqp1fZQoaAZHwHASkuUUwi9oB0vIaAhHQJlUxy/9Hc11fZQoaAZHwG4I6Mir1dxoB00DAWgIR0CZVQJoTPB0dX2UKGgGR8BwG71L8JlbaAdLxWgIR0CZVVeaa1CxdX2UKGgGR8BqLVLHuJDWaAdNJQFoCEdAmVVrXxvvSnV9lChoBkfAa6bxwQ176mgHTTkBaAhHQJlVmIvalDZ1fZQoaAZHwG4nOrIYFaBoB00IAWgIR0CZVZcBEKE4dX2UKGgGR8Bqce+sYEW7aAdLwWgIR0CZVcrEtNBXdX2UKGgGR8BoLXuiN83NaAdLnmgIR0CZVgJtBOYZdX2UKGgGR8BjneFvhqCZaAdLbGgIR0CZVhuBtk4FdX2UKGgGR8BlqfzBhx5taAdLkmgIR0CZViDGtITXdX2UKGgGR8BsgH82rGR3aAdNSQFoCEdAmVY8l5WzW3V9lChoBkfAZVXEDyOJcmgHS31oCEdAmVZvHktEonV9lChoBkfAZqNSUkfLcWgHS2RoCEdAmVuPo3aSLnV9lChoBkfAZiTy3CsOomgHS7VoCEdAmVvB02cawXV9lChoBkfAZIGwfyPMjmgHS3doCEdAmVwhVuJk5XV9lChoBkfAaBmXEZR8+mgHS6doCEdAmVxiwwCbMHV9lChoBkfAYzWRKYiPhmgHS4BoCEdAmVyGJm/WUnV9lChoBkfAYEuBkI5YHWgHS39oCEdAmVzJbpu/DnV9lChoBkfAZgS/Yao/A2gHS4FoCEdAmV1y9M9KVnV9lChoBkfActeEyckMTmgHS/ZoCEdAmV2r6k6903V9lChoBkfAcoZCI1tO22gHS89oCEdAmV3fxH5JsnV9lChoBkfAcdcz8P4EfWgHS8ZoCEdAmV3dVBD5TXV9lChoBkfAZtDEaVD8cmgHTTkBaAhHQJlityMkyDZ1fZQoaAZHwGSYZ6Uqx1RoB0v1aAhHQJlkmkFfReF1fZQoaAZHwGJ5GVzIV/NoB01TAWgIR0CZZK2VE/jbdX2UKGgGR8Bf53JHRTjvaAdLkWgIR0CZZP+K0lZ6dX2UKGgGR8Biut4X40uUaAdNJwFoCEdAmWXJ4rz5GnV9lChoBkfAYXRd2Pkq+mgHS5RoCEdAmWsDRx95QnV9lChoBkfAWuD9Q40dimgHS5poCEdAmWsxpg1FY3V9lChoBkfAZo4XKKYRd2gHS5NoCEdAmWtQZOzpo3V9lChoBkfAdU5IkJKJ22gHTRABaAhHQJlrcPd2xIJ1fZQoaAZHwF5fmxt52QpoB0vmaAhHQJlrergflp51fZQoaAZHwFxqGFSKm9BoB01KAWgIR0CZa3VclgMMdX2UKGgGR8BflTjm0VrRaAdNFgFoCEdAmWvZlJ6IFnV9lChoBkfAYn2rSVnmJWgHTaoBaAhHQJlseFlCkXV1fZQoaAZHwGE3AoXsPatoB004AWgIR0CZbT1s+FDfdX2UKGgGR8BfVCoXKr7waAdLl2gIR0CZdQbEP1+RdX2UKGgGR8BjTLTnaFmGaAdL6GgIR0CZdRhpxm03dX2UKGgGR8BiDc7MgU1yaAdLmWgIR0CZdSXT3IuHdX2UKGgGR8Bn+AmReTmoaAdLs2gIR0CZdkICU5dXdX2UKGgGR8BodL7IkqtpaAdLcGgIR0CZdm4ku6ErdX2UKGgGR8Bq97RUm2LHaAdLzWgIR0CZdwznA6+4dX2UKGgGR8BkHt7v5P/JaAdLnWgIR0CZdw0nw5NodX2UKGgGR8Bxx8bR4QjEaAdNDAFoCEdAmXdfjwQUYnV9lChoBkfAaVTM9KVY6mgHTQQBaAhHQJl4MFFDv3J1fZQoaAZHwHEv3FcY64loB00wAWgIR0CZeF/336AOdX2UKGgGR8Bp+f49HMEBaAdL12gIR0CZfw9xp+MIdX2UKGgGR8BnW2N70Fr3aAdNmgFoCEdAmX9h0uDjBHV9lChoBkfAcd/SPluFYmgHTSEBaAhHQJmAs7ihnJ11fZQoaAZHwGfUy0Sh8IBoB031AWgIR0CZgOVIqbz9dX2UKGgGR8BxWwCq6vq1aAdNIQFoCEdAmYEMyad+X3V9lChoBkfAal2EGqxTsWgHTdsBaAhHQJmBX5vcafl1fZQoaAZHwGhsQ5eZ5RloB0t5aAhHQJmB9t3wCr91fZQoaAZHwGgC53s5XEJoB0tcaAhHQJmCG6STyJ91fZQoaAZHwGkhJbt7a7FoB0uQaAhHQJmCmhnJ1aJ1fZQoaAZHwGVlpvgm7atoB0vFaAhHQJmC21b7j1h1fZQoaAZHwGkLpkoWpIdoB0tYaAhHQJmJVxdY4hl1fZQoaAZHwGuqTsY2sJZoB0u/aAhHQJmJZSOzY291fZQoaAZHwH4EE6PsAvNoB0vTaAhHQJmJ26+WWyF1fZQoaAZHwGj2dVFQVKxoB0vQaAhHQJmKyjM3ZPF1fZQoaAZHwGq49f1HvttoB00dAWgIR0CZiszf779AdX2UKGgGR8BaXCc5Ke05aAdLn2gIR0CZizN0vGp/dX2UKGgGR8Bqpk+/xlQNaAdLgWgIR0CZi5bRF7UodX2UKGgGR8BlGXxOLzf8aAdLs2gIR0CZkMGJvYOEdX2UKGgGR8BkspxYJVsDaAdLiGgIR0CZkO53C9AYdX2UKGgGR8BjqZpWV/tqaAdNJAFoCEdAmZE3Rw6ySnV9lChoBkfAW3N1Ng0CR2gHS+ZoCEdAmZE1AE+xGHV9lChoBkfAZKMXWvr4WWgHTUMBaAhHQJmRgu14Pf91fZQoaAZHwGchrQokRjBoB0uqaAhHQJmR0AggX/J1fZQoaAZHwGEQ08V58jRoB006AWgIR0CZkiDNyHVPdX2UKGgGR8BnAfCsOoYOaAdNogFoCEdAmZKOUD+zdHV9lChoBkfAY2y8Md92HWgHS39oCEdAmZK7I1cdHXV9lChoBkfAY4wYtQKrrGgHTUoBaAhHQJmTPS5RTCN1fZQoaAZHwGSeYX40uUVoB0uLaAhHQJmTVqfvnbJ1fZQoaAZHwGZAY/mknCxoB00FAWgIR0CZk2LBbfP5dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4890, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 128, "gamma": 0.9974465612383338, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5453819858820357, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+Rtheu6y5khZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (189 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -227.9190117, "std_reward": 47.96909454454613, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-30T13:36:15.324447"}
|