Commit
·
1ea6a43
1
Parent(s):
8f74e27
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: output_diff_approach
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# output_diff_approach
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [csebuetnlp/banglabert](https://huggingface.co/csebuetnlp/banglabert) on an unknown dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.1603
|
17 |
+
- 5 Err Precision: 0.0
|
18 |
+
- 5 Err Recall: 0.0
|
19 |
+
- 5 Err F1: 0.0
|
20 |
+
- 5 Err Number: 34
|
21 |
+
- Precision: 0.4328
|
22 |
+
- Recall: 0.3244
|
23 |
+
- F1: 0.3709
|
24 |
+
- Number: 9934
|
25 |
+
- Err Precision: 0.0
|
26 |
+
- Err Recall: 0.0
|
27 |
+
- Err F1: 0.0
|
28 |
+
- Err Number: 285
|
29 |
+
- Egin Err Precision: 0.7528
|
30 |
+
- Egin Err Recall: 0.4192
|
31 |
+
- Egin Err F1: 0.5385
|
32 |
+
- Egin Err Number: 1126
|
33 |
+
- El Err Precision: 0.7112
|
34 |
+
- El Err Recall: 0.2891
|
35 |
+
- El Err F1: 0.4111
|
36 |
+
- El Err Number: 1380
|
37 |
+
- Nd Err Precision: 0.6986
|
38 |
+
- Nd Err Recall: 0.4487
|
39 |
+
- Nd Err F1: 0.5464
|
40 |
+
- Nd Err Number: 1188
|
41 |
+
- Ne Word Err Precision: 0.7223
|
42 |
+
- Ne Word Err Recall: 0.6297
|
43 |
+
- Ne Word Err F1: 0.6728
|
44 |
+
- Ne Word Err Number: 8247
|
45 |
+
- Unc Insert Err Precision: 0.6140
|
46 |
+
- Unc Insert Err Recall: 0.0776
|
47 |
+
- Unc Insert Err F1: 0.1378
|
48 |
+
- Unc Insert Err Number: 902
|
49 |
+
- Micro Avg Precision: 0.5922
|
50 |
+
- Micro Avg Recall: 0.4282
|
51 |
+
- Micro Avg F1: 0.4970
|
52 |
+
- Micro Avg Number: 23096
|
53 |
+
- Macro Avg Precision: 0.4915
|
54 |
+
- Macro Avg Recall: 0.2736
|
55 |
+
- Macro Avg F1: 0.3347
|
56 |
+
- Macro Avg Number: 23096
|
57 |
+
- Weighted Avg Precision: 0.5832
|
58 |
+
- Weighted Avg Recall: 0.4282
|
59 |
+
- Weighted Avg F1: 0.4841
|
60 |
+
- Weighted Avg Number: 23096
|
61 |
+
- Overall Accuracy: 0.9514
|
62 |
+
|
63 |
+
## Model description
|
64 |
+
|
65 |
+
More information needed
|
66 |
+
|
67 |
+
## Intended uses & limitations
|
68 |
+
|
69 |
+
More information needed
|
70 |
+
|
71 |
+
## Training and evaluation data
|
72 |
+
|
73 |
+
More information needed
|
74 |
+
|
75 |
+
## Training procedure
|
76 |
+
|
77 |
+
### Training hyperparameters
|
78 |
+
|
79 |
+
The following hyperparameters were used during training:
|
80 |
+
- learning_rate: 2e-05
|
81 |
+
- train_batch_size: 16
|
82 |
+
- eval_batch_size: 16
|
83 |
+
- seed: 42
|
84 |
+
- gradient_accumulation_steps: 2
|
85 |
+
- total_train_batch_size: 32
|
86 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
87 |
+
- lr_scheduler_type: linear
|
88 |
+
- lr_scheduler_warmup_ratio: 0.1
|
89 |
+
- num_epochs: 2.0
|
90 |
+
|
91 |
+
### Training results
|
92 |
+
|
93 |
+
| Training Loss | Epoch | Step | Validation Loss | 5 Err Precision | 5 Err Recall | 5 Err F1 | 5 Err Number | Precision | Recall | F1 | Number | Err Precision | Err Recall | Err F1 | Err Number | Egin Err Precision | Egin Err Recall | Egin Err F1 | Egin Err Number | El Err Precision | El Err Recall | El Err F1 | El Err Number | Nd Err Precision | Nd Err Recall | Nd Err F1 | Nd Err Number | Ne Word Err Precision | Ne Word Err Recall | Ne Word Err F1 | Ne Word Err Number | Unc Insert Err Precision | Unc Insert Err Recall | Unc Insert Err F1 | Unc Insert Err Number | Micro Avg Precision | Micro Avg Recall | Micro Avg F1 | Micro Avg Number | Macro Avg Precision | Macro Avg Recall | Macro Avg F1 | Macro Avg Number | Weighted Avg Precision | Weighted Avg Recall | Weighted Avg F1 | Weighted Avg Number | Overall Accuracy |
|
94 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------:|:--------:|:------------:|:-----------:|:--------:|:------:|:--------:|:--------------:|:-----------:|:-------:|:-----------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------:|:-------------:|:---------:|:-------------:|:----------------:|:-------------:|:---------:|:-------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------------:|:----------------:|:------------:|:----------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|
|
95 |
+
| 0.3987 | 1.0 | 575 | 0.1930 | 0.0 | 0.0 | 0.0 | 34 | 0.3517 | 0.1737 | 0.2326 | 9934 | 0.0 | 0.0 | 0.0 | 285 | 0.8127 | 0.2389 | 0.3693 | 1126 | 0.8345 | 0.1681 | 0.2799 | 1380 | 0.6727 | 0.3460 | 0.4569 | 1188 | 0.7470 | 0.4215 | 0.5389 | 8247 | 0.25 | 0.0011 | 0.0022 | 902 | 0.5670 | 0.2648 | 0.3610 | 23096 | 0.4586 | 0.1687 | 0.2350 | 23096 | 0.5519 | 0.2648 | 0.3508 | 23096 | 0.9422 |
|
96 |
+
| 0.1861 | 2.0 | 1150 | 0.1603 | 0.0 | 0.0 | 0.0 | 34 | 0.4328 | 0.3244 | 0.3709 | 9934 | 0.0 | 0.0 | 0.0 | 285 | 0.7528 | 0.4192 | 0.5385 | 1126 | 0.7112 | 0.2891 | 0.4111 | 1380 | 0.6986 | 0.4487 | 0.5464 | 1188 | 0.7223 | 0.6297 | 0.6728 | 8247 | 0.6140 | 0.0776 | 0.1378 | 902 | 0.5922 | 0.4282 | 0.4970 | 23096 | 0.4915 | 0.2736 | 0.3347 | 23096 | 0.5832 | 0.4282 | 0.4841 | 23096 | 0.9514 |
|
97 |
+
|
98 |
+
|
99 |
+
### Framework versions
|
100 |
+
|
101 |
+
- Transformers 4.25.1
|
102 |
+
- Pytorch 1.13.1+cu117
|
103 |
+
- Datasets 2.9.0
|
104 |
+
- Tokenizers 0.13.2
|