Shadman-Rohan commited on
Commit
1ea6a43
·
1 Parent(s): 8f74e27

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +104 -0
README.md ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ model-index:
5
+ - name: output_diff_approach
6
+ results: []
7
+ ---
8
+
9
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
+ should probably proofread and complete it, then remove this comment. -->
11
+
12
+ # output_diff_approach
13
+
14
+ This model is a fine-tuned version of [csebuetnlp/banglabert](https://huggingface.co/csebuetnlp/banglabert) on an unknown dataset.
15
+ It achieves the following results on the evaluation set:
16
+ - Loss: 0.1603
17
+ - 5 Err Precision: 0.0
18
+ - 5 Err Recall: 0.0
19
+ - 5 Err F1: 0.0
20
+ - 5 Err Number: 34
21
+ - Precision: 0.4328
22
+ - Recall: 0.3244
23
+ - F1: 0.3709
24
+ - Number: 9934
25
+ - Err Precision: 0.0
26
+ - Err Recall: 0.0
27
+ - Err F1: 0.0
28
+ - Err Number: 285
29
+ - Egin Err Precision: 0.7528
30
+ - Egin Err Recall: 0.4192
31
+ - Egin Err F1: 0.5385
32
+ - Egin Err Number: 1126
33
+ - El Err Precision: 0.7112
34
+ - El Err Recall: 0.2891
35
+ - El Err F1: 0.4111
36
+ - El Err Number: 1380
37
+ - Nd Err Precision: 0.6986
38
+ - Nd Err Recall: 0.4487
39
+ - Nd Err F1: 0.5464
40
+ - Nd Err Number: 1188
41
+ - Ne Word Err Precision: 0.7223
42
+ - Ne Word Err Recall: 0.6297
43
+ - Ne Word Err F1: 0.6728
44
+ - Ne Word Err Number: 8247
45
+ - Unc Insert Err Precision: 0.6140
46
+ - Unc Insert Err Recall: 0.0776
47
+ - Unc Insert Err F1: 0.1378
48
+ - Unc Insert Err Number: 902
49
+ - Micro Avg Precision: 0.5922
50
+ - Micro Avg Recall: 0.4282
51
+ - Micro Avg F1: 0.4970
52
+ - Micro Avg Number: 23096
53
+ - Macro Avg Precision: 0.4915
54
+ - Macro Avg Recall: 0.2736
55
+ - Macro Avg F1: 0.3347
56
+ - Macro Avg Number: 23096
57
+ - Weighted Avg Precision: 0.5832
58
+ - Weighted Avg Recall: 0.4282
59
+ - Weighted Avg F1: 0.4841
60
+ - Weighted Avg Number: 23096
61
+ - Overall Accuracy: 0.9514
62
+
63
+ ## Model description
64
+
65
+ More information needed
66
+
67
+ ## Intended uses & limitations
68
+
69
+ More information needed
70
+
71
+ ## Training and evaluation data
72
+
73
+ More information needed
74
+
75
+ ## Training procedure
76
+
77
+ ### Training hyperparameters
78
+
79
+ The following hyperparameters were used during training:
80
+ - learning_rate: 2e-05
81
+ - train_batch_size: 16
82
+ - eval_batch_size: 16
83
+ - seed: 42
84
+ - gradient_accumulation_steps: 2
85
+ - total_train_batch_size: 32
86
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
87
+ - lr_scheduler_type: linear
88
+ - lr_scheduler_warmup_ratio: 0.1
89
+ - num_epochs: 2.0
90
+
91
+ ### Training results
92
+
93
+ | Training Loss | Epoch | Step | Validation Loss | 5 Err Precision | 5 Err Recall | 5 Err F1 | 5 Err Number | Precision | Recall | F1 | Number | Err Precision | Err Recall | Err F1 | Err Number | Egin Err Precision | Egin Err Recall | Egin Err F1 | Egin Err Number | El Err Precision | El Err Recall | El Err F1 | El Err Number | Nd Err Precision | Nd Err Recall | Nd Err F1 | Nd Err Number | Ne Word Err Precision | Ne Word Err Recall | Ne Word Err F1 | Ne Word Err Number | Unc Insert Err Precision | Unc Insert Err Recall | Unc Insert Err F1 | Unc Insert Err Number | Micro Avg Precision | Micro Avg Recall | Micro Avg F1 | Micro Avg Number | Macro Avg Precision | Macro Avg Recall | Macro Avg F1 | Macro Avg Number | Weighted Avg Precision | Weighted Avg Recall | Weighted Avg F1 | Weighted Avg Number | Overall Accuracy |
94
+ |:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------:|:--------:|:------------:|:-----------:|:--------:|:------:|:--------:|:--------------:|:-----------:|:-------:|:-----------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------:|:-------------:|:---------:|:-------------:|:----------------:|:-------------:|:---------:|:-------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------------:|:----------------:|:------------:|:----------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|
95
+ | 0.3987 | 1.0 | 575 | 0.1930 | 0.0 | 0.0 | 0.0 | 34 | 0.3517 | 0.1737 | 0.2326 | 9934 | 0.0 | 0.0 | 0.0 | 285 | 0.8127 | 0.2389 | 0.3693 | 1126 | 0.8345 | 0.1681 | 0.2799 | 1380 | 0.6727 | 0.3460 | 0.4569 | 1188 | 0.7470 | 0.4215 | 0.5389 | 8247 | 0.25 | 0.0011 | 0.0022 | 902 | 0.5670 | 0.2648 | 0.3610 | 23096 | 0.4586 | 0.1687 | 0.2350 | 23096 | 0.5519 | 0.2648 | 0.3508 | 23096 | 0.9422 |
96
+ | 0.1861 | 2.0 | 1150 | 0.1603 | 0.0 | 0.0 | 0.0 | 34 | 0.4328 | 0.3244 | 0.3709 | 9934 | 0.0 | 0.0 | 0.0 | 285 | 0.7528 | 0.4192 | 0.5385 | 1126 | 0.7112 | 0.2891 | 0.4111 | 1380 | 0.6986 | 0.4487 | 0.5464 | 1188 | 0.7223 | 0.6297 | 0.6728 | 8247 | 0.6140 | 0.0776 | 0.1378 | 902 | 0.5922 | 0.4282 | 0.4970 | 23096 | 0.4915 | 0.2736 | 0.3347 | 23096 | 0.5832 | 0.4282 | 0.4841 | 23096 | 0.9514 |
97
+
98
+
99
+ ### Framework versions
100
+
101
+ - Transformers 4.25.1
102
+ - Pytorch 1.13.1+cu117
103
+ - Datasets 2.9.0
104
+ - Tokenizers 0.13.2