--- tags: - generated_from_trainer model-index: - name: outputs results: [] --- # outputs This model is a fine-tuned version of [csebuetnlp/banglabert](https://huggingface.co/csebuetnlp/banglabert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2073 - 5 Err Precision: 0.0 - 5 Err Recall: 0.0 - 5 Err F1: 0.0 - 5 Err Number: 34 - Precision: 0.3586 - Recall: 0.2192 - F1: 0.2721 - Number: 9934 - Err Precision: 0.0 - Err Recall: 0.0 - Err F1: 0.0 - Err Number: 285 - Egin Err Precision: 0.9184 - Egin Err Recall: 0.0400 - Egin Err F1: 0.0766 - Egin Err Number: 1126 - El Err Precision: 0.8718 - El Err Recall: 0.1478 - El Err F1: 0.2528 - El Err Number: 1380 - Nd Err Precision: 0.7453 - Nd Err Recall: 0.1995 - Nd Err F1: 0.3147 - Nd Err Number: 1188 - Ne Word Err Precision: 0.6677 - Ne Word Err Recall: 0.5206 - Ne Word Err F1: 0.5850 - Ne Word Err Number: 8247 - Unc Insert Err Precision: 1.0 - Unc Insert Err Recall: 0.0011 - Unc Insert Err F1: 0.0022 - Unc Insert Err Number: 902 - Micro Avg Precision: 0.5309 - Micro Avg Recall: 0.3013 - Micro Avg F1: 0.3844 - Micro Avg Number: 23096 - Macro Avg Precision: 0.5702 - Macro Avg Recall: 0.1410 - Macro Avg F1: 0.1879 - Macro Avg Number: 23096 - Weighted Avg Precision: 0.5669 - Weighted Avg Recall: 0.3013 - Weighted Avg F1: 0.3611 - Weighted Avg Number: 23096 - Overall Accuracy: 0.9419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | 5 Err Precision | 5 Err Recall | 5 Err F1 | 5 Err Number | Precision | Recall | F1 | Number | Err Precision | Err Recall | Err F1 | Err Number | Egin Err Precision | Egin Err Recall | Egin Err F1 | Egin Err Number | El Err Precision | El Err Recall | El Err F1 | El Err Number | Nd Err Precision | Nd Err Recall | Nd Err F1 | Nd Err Number | Ne Word Err Precision | Ne Word Err Recall | Ne Word Err F1 | Ne Word Err Number | Unc Insert Err Precision | Unc Insert Err Recall | Unc Insert Err F1 | Unc Insert Err Number | Micro Avg Precision | Micro Avg Recall | Micro Avg F1 | Micro Avg Number | Macro Avg Precision | Macro Avg Recall | Macro Avg F1 | Macro Avg Number | Weighted Avg Precision | Weighted Avg Recall | Weighted Avg F1 | Weighted Avg Number | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------:|:--------:|:------------:|:-----------:|:--------:|:------:|:--------:|:--------------:|:-----------:|:-------:|:-----------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------:|:-------------:|:---------:|:-------------:|:----------------:|:-------------:|:---------:|:-------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------------:|:----------------:|:------------:|:----------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:| | 0.3677 | 1.0 | 575 | 0.2073 | 0.0 | 0.0 | 0.0 | 34 | 0.3586 | 0.2192 | 0.2721 | 9934 | 0.0 | 0.0 | 0.0 | 285 | 0.9184 | 0.0400 | 0.0766 | 1126 | 0.8718 | 0.1478 | 0.2528 | 1380 | 0.7453 | 0.1995 | 0.3147 | 1188 | 0.6677 | 0.5206 | 0.5850 | 8247 | 1.0 | 0.0011 | 0.0022 | 902 | 0.5309 | 0.3013 | 0.3844 | 23096 | 0.5702 | 0.1410 | 0.1879 | 23096 | 0.5669 | 0.3013 | 0.3611 | 23096 | 0.9419 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2