Shahriardev commited on
Commit
142bb21
·
1 Parent(s): 1c68bc5

Initial commit of my fine-tuned embedding model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,399 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:19
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/all-distilroberta-v1
10
+ pipeline_tag: sentence-similarity
11
+ library_name: sentence-transformers
12
+ metrics:
13
+ - cosine_accuracy
14
+ model-index:
15
+ - name: SentenceTransformer based on sentence-transformers/all-distilroberta-v1
16
+ results:
17
+ - task:
18
+ type: triplet
19
+ name: Triplet
20
+ dataset:
21
+ name: ai faq validation
22
+ type: ai-faq-validation
23
+ metrics:
24
+ - type: cosine_accuracy
25
+ value: 1.0
26
+ name: Cosine Accuracy
27
+ - task:
28
+ type: triplet
29
+ name: Triplet
30
+ dataset:
31
+ name: ai job test
32
+ type: ai-job-test
33
+ metrics:
34
+ - type: cosine_accuracy
35
+ value: 1.0
36
+ name: Cosine Accuracy
37
+ ---
38
+
39
+ # SentenceTransformer based on sentence-transformers/all-distilroberta-v1
40
+
41
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
42
+
43
+ ## Model Details
44
+
45
+ ### Model Description
46
+ - **Model Type:** Sentence Transformer
47
+ - **Base model:** [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1) <!-- at revision 842eaed40bee4d61673a81c92d5689a8fed7a09f -->
48
+ - **Maximum Sequence Length:** 512 tokens
49
+ - **Output Dimensionality:** 768 dimensions
50
+ - **Similarity Function:** Cosine Similarity
51
+ <!-- - **Training Dataset:** Unknown -->
52
+ <!-- - **Language:** Unknown -->
53
+ <!-- - **License:** Unknown -->
54
+
55
+ ### Model Sources
56
+
57
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
58
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
59
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
60
+
61
+ ### Full Model Architecture
62
+
63
+ ```
64
+ SentenceTransformer(
65
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
66
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
67
+ (2): Normalize()
68
+ )
69
+ ```
70
+
71
+ ## Usage
72
+
73
+ ### Direct Usage (Sentence Transformers)
74
+
75
+ First install the Sentence Transformers library:
76
+
77
+ ```bash
78
+ pip install -U sentence-transformers
79
+ ```
80
+
81
+ Then you can load this model and run inference.
82
+ ```python
83
+ from sentence_transformers import SentenceTransformer
84
+
85
+ # Download from the 🤗 Hub
86
+ model = SentenceTransformer("sentence_transformers_model_id")
87
+ # Run inference
88
+ sentences = [
89
+ 'The weather is lovely today.',
90
+ "It's so sunny outside!",
91
+ 'He drove to the stadium.',
92
+ ]
93
+ embeddings = model.encode(sentences)
94
+ print(embeddings.shape)
95
+ # [3, 768]
96
+
97
+ # Get the similarity scores for the embeddings
98
+ similarities = model.similarity(embeddings, embeddings)
99
+ print(similarities.shape)
100
+ # [3, 3]
101
+ ```
102
+
103
+ <!--
104
+ ### Direct Usage (Transformers)
105
+
106
+ <details><summary>Click to see the direct usage in Transformers</summary>
107
+
108
+ </details>
109
+ -->
110
+
111
+ <!--
112
+ ### Downstream Usage (Sentence Transformers)
113
+
114
+ You can finetune this model on your own dataset.
115
+
116
+ <details><summary>Click to expand</summary>
117
+
118
+ </details>
119
+ -->
120
+
121
+ <!--
122
+ ### Out-of-Scope Use
123
+
124
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
125
+ -->
126
+
127
+ ## Evaluation
128
+
129
+ ### Metrics
130
+
131
+ #### Triplet
132
+
133
+ * Datasets: `ai-faq-validation` and `ai-job-test`
134
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
135
+
136
+ | Metric | ai-faq-validation | ai-job-test |
137
+ |:--------------------|:------------------|:------------|
138
+ | **cosine_accuracy** | **1.0** | **1.0** |
139
+
140
+ <!--
141
+ ## Bias, Risks and Limitations
142
+
143
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
144
+ -->
145
+
146
+ <!--
147
+ ### Recommendations
148
+
149
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
150
+ -->
151
+
152
+ ## Training Details
153
+
154
+ ### Training Dataset
155
+
156
+ #### Unnamed Dataset
157
+
158
+ * Size: 19 training samples
159
+ * Columns: <code>question</code>, <code>answer</code>, and <code>answer_neg</code>
160
+ * Approximate statistics based on the first 19 samples:
161
+ | | question | answer | answer_neg |
162
+ |:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
163
+ | type | string | string | string |
164
+ | details | <ul><li>min: 21 tokens</li><li>mean: 59.47 tokens</li><li>max: 120 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 250.11 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 262.47 tokens</li><li>max: 512 tokens</li></ul> |
165
+ * Samples:
166
+ | question | answer | answer_neg |
167
+ |:-----------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
168
+ | <code>در آبان پرایم چه خدماتی دریافت میکنم؟</code> | <code>آبان پرایم یک صرافی آنلاین است به این معنی که شما تمامی خدمات صرافی را میتوانید به صورت آنلاین و غیر حضوری دریافت کنید. <br>خدمات ما شامل:<br>- امکان خرید و فروش ارزهای مختلف تومان، تتر، درهم، دلار آمریکا، دلار استرالیا، دلار کانادا، لیر ترکیه<br>- نرخ لحظه ای<br>- واریز و برداشت نقدی<br>- انجام انواع حوالجات <br>- واریز مستقیم به حساب شبا ایران با هر رقم از طریق وبسایت<br>- امکان دریافت گزارش صورت حساب ها<br>- پشتیبانی ۲۴ ساعته</code> | <code> </code> |
169
+ | <code>توی امارات به کدوم بانک ها واریز انجام میدین؟</code> | <code>واریز به تمامی بانک های امارات انجام میشود.</code> | <code>شما میتوانید با شماره موبایل(با پیش شماره های ایران،امارات، ترکیه، کانادا و استرالیا) یا ایمیل به راحتی حساب کاربری بسازید<br>https://youtu.be/Sl1ehlS6TYY<br><br> برای ثبت‌نام:<br>۱) شماره موبایل یا ایمیل خودتون را وارد کنید<br>۲) در مرحله بعد کد تایید ارسال شده به موبایل یا ایمیل رو وارد کنید<br>۳) رمز عبور خودتون رو تعریف کنید و وارد حساب کاربری بشید</code> |
170
+ | <code>واریز و برداشت تتر</code> | <code>واریز و برداشت تتر در آبان پرایم به صورت کاملا آنلاین انجام میشود. <br>https://youtu.be/ARzOJ6Pgp7k<br><br>واریز تتر<br>۱) در صفحه اصلی گزینه deposit تتر رو انتخاب کنید<br>۲) شبکه واریز (TRC20 یا BSC) رو انتخاب و آدرس ولت رو کپی کنید.<br>۴) تتر مورد نظرتون رو از ولت مبدا به آدرس ولت آبان پرام انتقال بدید.<br>۵) چند دقیقه بعد از انتقال تراکنش انجام میشه و اکانت آبان پرایمتون مستقیما شارژ میشه.<br><br>برداشت تتر<br>۱) در صفحه اصلی گزینه Withdraw تتر رو انتخاب کنید.<br>۳) یکی از شبکه‌های برداشت (TRC20 یا BSC) رو انتخاب کنید.<br>۴) آدرس کیف پول مقصد رو وارد کنید<br>آدرس مقصد رو دقیق و منطبق با شبکه برداشت انتخابی وارد کنید.<br>۵) مقدار تتری که می‌خواهید برداشت کنید رو وارد کنید.<br>۶) بعد از بررسی و اطمینان از صحت اطلاعات درخواست برداشت خود را ثبت کنید.</code> | <code>واریز به تمامی بانک های امارات انجام میشود.</code> |
171
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
172
+ ```json
173
+ {
174
+ "scale": 20.0,
175
+ "similarity_fct": "cos_sim"
176
+ }
177
+ ```
178
+
179
+ ### Evaluation Dataset
180
+
181
+ #### Unnamed Dataset
182
+
183
+ * Size: 1 evaluation samples
184
+ * Columns: <code>question</code>, <code>answer</code>, and <code>answer_neg</code>
185
+ * Approximate statistics based on the first 1 samples:
186
+ | | question | answer | answer_neg |
187
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
188
+ | type | string | string | string |
189
+ | details | <ul><li>min: 52 tokens</li><li>mean: 52.0 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 512 tokens</li><li>mean: 512.0 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 50 tokens</li><li>mean: 50.0 tokens</li><li>max: 50 tokens</li></ul> |
190
+ * Samples:
191
+ | question | answer | answer_neg |
192
+ |:-------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|
193
+ | <code>رمز عبورم رو فراموش کردم چیکار باید بکنم؟</code> | <code>۱) انتخاب گزینه فراموشی رمز عبور( Forgot Password)<br>۲) وارد کردن شماره موبایل یا ایمیل<br>۳) وارد کردن کد امنیتی دریافتی از طریق پیامک یا ایمیل<br>۴) تعریف رمز جدید<br><br>اگر پیامک رمز یک‌بارمصرف (OTP) دریافت نمی‌کنید، این مراحل رو انجام بده: <br>- شماره موبایل رو درست وارد کن. (با پیش‌شماره صحیح) <br>- چند دقیقه صبر کن و دوباره تلاش کن. ممکنه گاهی اختلال موقتی از سمت سرویس‌دهنده پیامک باشه.<br>- اینترنت و آنتن گوشی رو بررسی کن. <br>- پوشه پیامک‌های تبلیغاتی و مسدودشده رو چک کن. <br>- دوباره درخواست کد بده و مطمئن شو که تعداد دفعات مجاز تموم نشده. <br>- اگر باز هم دریافت نکردی، با پشتیبانی تماس بگیر. <br></code> | <code>برای انجام حواله با پشتیبانی تماس بگیرید.</code> |
194
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
195
+ ```json
196
+ {
197
+ "scale": 20.0,
198
+ "similarity_fct": "cos_sim"
199
+ }
200
+ ```
201
+
202
+ ### Training Hyperparameters
203
+ #### Non-Default Hyperparameters
204
+
205
+ - `eval_strategy`: steps
206
+ - `per_device_train_batch_size`: 16
207
+ - `per_device_eval_batch_size`: 16
208
+ - `learning_rate`: 2e-05
209
+ - `num_train_epochs`: 200
210
+ - `warmup_ratio`: 0.1
211
+ - `batch_sampler`: no_duplicates
212
+
213
+ #### All Hyperparameters
214
+ <details><summary>Click to expand</summary>
215
+
216
+ - `overwrite_output_dir`: False
217
+ - `do_predict`: False
218
+ - `eval_strategy`: steps
219
+ - `prediction_loss_only`: True
220
+ - `per_device_train_batch_size`: 16
221
+ - `per_device_eval_batch_size`: 16
222
+ - `per_gpu_train_batch_size`: None
223
+ - `per_gpu_eval_batch_size`: None
224
+ - `gradient_accumulation_steps`: 1
225
+ - `eval_accumulation_steps`: None
226
+ - `torch_empty_cache_steps`: None
227
+ - `learning_rate`: 2e-05
228
+ - `weight_decay`: 0.0
229
+ - `adam_beta1`: 0.9
230
+ - `adam_beta2`: 0.999
231
+ - `adam_epsilon`: 1e-08
232
+ - `max_grad_norm`: 1.0
233
+ - `num_train_epochs`: 200
234
+ - `max_steps`: -1
235
+ - `lr_scheduler_type`: linear
236
+ - `lr_scheduler_kwargs`: {}
237
+ - `warmup_ratio`: 0.1
238
+ - `warmup_steps`: 0
239
+ - `log_level`: passive
240
+ - `log_level_replica`: warning
241
+ - `log_on_each_node`: True
242
+ - `logging_nan_inf_filter`: True
243
+ - `save_safetensors`: True
244
+ - `save_on_each_node`: False
245
+ - `save_only_model`: False
246
+ - `restore_callback_states_from_checkpoint`: False
247
+ - `no_cuda`: False
248
+ - `use_cpu`: False
249
+ - `use_mps_device`: False
250
+ - `seed`: 42
251
+ - `data_seed`: None
252
+ - `jit_mode_eval`: False
253
+ - `use_ipex`: False
254
+ - `bf16`: False
255
+ - `fp16`: False
256
+ - `fp16_opt_level`: O1
257
+ - `half_precision_backend`: auto
258
+ - `bf16_full_eval`: False
259
+ - `fp16_full_eval`: False
260
+ - `tf32`: None
261
+ - `local_rank`: 0
262
+ - `ddp_backend`: None
263
+ - `tpu_num_cores`: None
264
+ - `tpu_metrics_debug`: False
265
+ - `debug`: []
266
+ - `dataloader_drop_last`: False
267
+ - `dataloader_num_workers`: 0
268
+ - `dataloader_prefetch_factor`: None
269
+ - `past_index`: -1
270
+ - `disable_tqdm`: False
271
+ - `remove_unused_columns`: True
272
+ - `label_names`: None
273
+ - `load_best_model_at_end`: False
274
+ - `ignore_data_skip`: False
275
+ - `fsdp`: []
276
+ - `fsdp_min_num_params`: 0
277
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
278
+ - `fsdp_transformer_layer_cls_to_wrap`: None
279
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
280
+ - `deepspeed`: None
281
+ - `label_smoothing_factor`: 0.0
282
+ - `optim`: adamw_torch
283
+ - `optim_args`: None
284
+ - `adafactor`: False
285
+ - `group_by_length`: False
286
+ - `length_column_name`: length
287
+ - `ddp_find_unused_parameters`: None
288
+ - `ddp_bucket_cap_mb`: None
289
+ - `ddp_broadcast_buffers`: False
290
+ - `dataloader_pin_memory`: True
291
+ - `dataloader_persistent_workers`: False
292
+ - `skip_memory_metrics`: True
293
+ - `use_legacy_prediction_loop`: False
294
+ - `push_to_hub`: False
295
+ - `resume_from_checkpoint`: None
296
+ - `hub_model_id`: None
297
+ - `hub_strategy`: every_save
298
+ - `hub_private_repo`: None
299
+ - `hub_always_push`: False
300
+ - `gradient_checkpointing`: False
301
+ - `gradient_checkpointing_kwargs`: None
302
+ - `include_inputs_for_metrics`: False
303
+ - `include_for_metrics`: []
304
+ - `eval_do_concat_batches`: True
305
+ - `fp16_backend`: auto
306
+ - `push_to_hub_model_id`: None
307
+ - `push_to_hub_organization`: None
308
+ - `mp_parameters`:
309
+ - `auto_find_batch_size`: False
310
+ - `full_determinism`: False
311
+ - `torchdynamo`: None
312
+ - `ray_scope`: last
313
+ - `ddp_timeout`: 1800
314
+ - `torch_compile`: False
315
+ - `torch_compile_backend`: None
316
+ - `torch_compile_mode`: None
317
+ - `dispatch_batches`: None
318
+ - `split_batches`: None
319
+ - `include_tokens_per_second`: False
320
+ - `include_num_input_tokens_seen`: False
321
+ - `neftune_noise_alpha`: None
322
+ - `optim_target_modules`: None
323
+ - `batch_eval_metrics`: False
324
+ - `eval_on_start`: False
325
+ - `use_liger_kernel`: False
326
+ - `eval_use_gather_object`: False
327
+ - `average_tokens_across_devices`: False
328
+ - `prompts`: None
329
+ - `batch_sampler`: no_duplicates
330
+ - `multi_dataset_batch_sampler`: proportional
331
+
332
+ </details>
333
+
334
+ ### Training Logs
335
+ | Epoch | Step | Training Loss | Validation Loss | ai-faq-validation_cosine_accuracy | ai-job-test_cosine_accuracy |
336
+ |:-----:|:----:|:-------------:|:---------------:|:---------------------------------:|:---------------------------:|
337
+ | -1 | -1 | - | - | 0.0 | - |
338
+ | 50.0 | 100 | 1.0736 | 0.5462 | 1.0 | - |
339
+ | 100.0 | 200 | 0.0041 | 0.1209 | 1.0 | - |
340
+ | 150.0 | 300 | 0.0002 | 0.0663 | 1.0 | - |
341
+ | 200.0 | 400 | 0.0001 | 0.0556 | 1.0 | - |
342
+ | -1 | -1 | - | - | 1.0 | 1.0 |
343
+
344
+
345
+ ### Framework Versions
346
+ - Python: 3.10.16
347
+ - Sentence Transformers: 3.4.1
348
+ - Transformers: 4.50.0.dev0
349
+ - PyTorch: 2.6.0+cu124
350
+ - Accelerate: 1.3.0
351
+ - Datasets: 3.3.2
352
+ - Tokenizers: 0.21.0
353
+
354
+ ## Citation
355
+
356
+ ### BibTeX
357
+
358
+ #### Sentence Transformers
359
+ ```bibtex
360
+ @inproceedings{reimers-2019-sentence-bert,
361
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
362
+ author = "Reimers, Nils and Gurevych, Iryna",
363
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
364
+ month = "11",
365
+ year = "2019",
366
+ publisher = "Association for Computational Linguistics",
367
+ url = "https://arxiv.org/abs/1908.10084",
368
+ }
369
+ ```
370
+
371
+ #### MultipleNegativesRankingLoss
372
+ ```bibtex
373
+ @misc{henderson2017efficient,
374
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
375
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
376
+ year={2017},
377
+ eprint={1705.00652},
378
+ archivePrefix={arXiv},
379
+ primaryClass={cs.CL}
380
+ }
381
+ ```
382
+
383
+ <!--
384
+ ## Glossary
385
+
386
+ *Clearly define terms in order to be accessible across audiences.*
387
+ -->
388
+
389
+ <!--
390
+ ## Model Card Authors
391
+
392
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
393
+ -->
394
+
395
+ <!--
396
+ ## Model Card Contact
397
+
398
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
399
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-distilroberta-v1",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 6,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.50.0.dev0",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 50265
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.50.0.dev0",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80375d81a8a9b6c06701871f483eaedb2ac510b5400e0d8da285ad5ca4a5ca05
3
+ size 328485128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "max_length": 128,
53
+ "model_max_length": 512,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "</s>",
59
+ "stride": 0,
60
+ "tokenizer_class": "RobertaTokenizer",
61
+ "trim_offsets": true,
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff