ppo-LunarLander-v2 / config.json
Shahzebbb's picture
Upload PPO LunarLander-v2 trained agent
31098b7
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f308cc3aa70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f308cc3ab00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f308cc3ab90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f308cc3ac20>", "_build": "<function ActorCriticPolicy._build at 0x7f308cc3acb0>", "forward": "<function ActorCriticPolicy.forward at 0x7f308cc3ad40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f308cc3add0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f308cc3ae60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f308cc3aef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f308cc3af80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f308cc3b010>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f308cc3b0a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f308cc27980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688643924855807927, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAD4m7z2TJc/UFtuvTZL+b7uZhI8C3+dvQAAAAAAAAAAOtsaPmhEjT9qs409T2/UvseVMz7/kz2+AAAAAAAAAAAzL9o79UFuPr0MB7yQd4a+LQ2xPZNW7j0AAAAAAAAAAJoIUT0K2WG7XWONu4HLkDwyhpE8QGx4vQAAgD8AAIA/ZljnvbDdGD920BQ+xRKmvp75GD2J7JK8AAAAAAAAAABNVaW9Ncs4Pgr9Pz0Mq5e+ruVnvWz2gr0AAAAAAAAAABr9Zr3ypK0/vjWgvjbGs76sDmy9lYtcvgAAAAAAAAAAxm4hPn1hGT9GiJ++ObqJviJlJL6Wezm9AAAAAAAAAACaei29ufQ4PoLcnT08/oS+aBw4Pfvh3bwAAAAAAAAAAJoGS729gRk/PzQiPSzVnL6fBJ+88DjOPQAAAAAAAAAAgAJKvducfT+ub028BsjNvr6/ir0k3RO9AAAAAAAAAAAz7c88hdKWu44qlDx5GHQ9q8YEvfmshTwAAIA/AACAP42vkL2DJDA/guXJPZOknL4FQhY8iB4rPQAAAAAAAAAAU6h7PqbYHz82E4G+RTOovjJUZb1iqq29AAAAAAAAAACa7Je81+FlPnXYlr0zrG2+xbIqvHGWjr0AAAAAAAAAAJq21Dzcwm68tli7PK2yhzu2ctK9EFwOvgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFRAVbzK9wqMAWyUS7WMAXSUR0CSDMph4MWodX2UKGgGR0By1TlDF6zFaAdNLAFoCEdAkg03TEzfrXV9lChoBkdAb2rQzk6tDGgHTRMBaAhHQJINj5mAbyZ1fZQoaAZHQHPUto371qZoB00bAWgIR0CSDpelKsdUdX2UKGgGR0BuV4ukDZDiaAdNGAFoCEdAkg60uL74z3V9lChoBkdAcDqL/CIk7mgHTQIBaAhHQJIPbXPJJXh1fZQoaAZHQHBslXq7iAFoB00YAWgIR0CSD+D+R5kcdX2UKGgGR0BGYIwudwvQaAdLxWgIR0CSEC3WnTAndX2UKGgGR0BwCME9t/FzaAdNCwFoCEdAkhCBJVbRnnV9lChoBkdARPYk7fYSQGgHS91oCEdAkhCayB06o3V9lChoBkdAbUvcSGrS3WgHTRQBaAhHQJIQpBfKISF1fZQoaAZHQHI5nGCI1tRoB00LAWgIR0CSEPNsFdLQdX2UKGgGR0Bsrjlq8DjjaAdNVwFoCEdAkhEilvZRK3V9lChoBkdAcXfybQTmGWgHTSgBaAhHQJITdkSVW0Z1fZQoaAZHQG5Eaya/h2poB00SAWgIR0CSE6ZFocrBdX2UKGgGR0BwbjVawD/3aAdNPwFoCEdAkhPRh6SkkHV9lChoBkdAUyA274BV/GgHS7xoCEdAkhPZIpYs/nV9lChoBkdAbGLNGEwnIGgHTQQBaAhHQJIUGI/JNj91fZQoaAZHQESjoLXtjTdoB0vOaAhHQJIUYkHD7651fZQoaAZHQHBUgf2bobJoB00ZAWgIR0CSFUotthuwdX2UKGgGR0BGTE+otL+QaAdL32gIR0CSFduZ1FH8dX2UKGgGR0BzFS4pc5bRaAdL9mgIR0CSFypI+W4WdX2UKGgGR0BzlPvjOs1baAdNKQFoCEdAkhemxyGSIXV9lChoBkdAbzkEvkBCD2gHTRgBaAhHQJIX5kH2RJV1fZQoaAZHQHB9f0VafSRoB00ZAWgIR0CSGF6d1+y7dX2UKGgGR0BwtzshPj4paAdNCwFoCEdAkhhe3trsSnV9lChoBkdAb31DhtLteGgHTRoBaAhHQJIYbz4DcM51fZQoaAZHQD11rDZUT+NoB0vLaAhHQJIZNGqgh8p1fZQoaAZHQER6gsbvPTpoB0vKaAhHQJIZh3u/k/91fZQoaAZHQHF6RkVeruJoB01CAWgIR0CSGiEal1r7dX2UKGgGR0BuMoyCWeH0aAdL9mgIR0CSGp2l2vB8dX2UKGgGR0Bwoh/kNnXeaAdNCAFoCEdAkhtW8/UvwnV9lChoBkdAcUM5gPVd5mgHTRgBaAhHQJIcIrjHXEt1fZQoaAZHQHCJLBTGYKJoB00PAWgIR0CSHDmois4ldX2UKGgGR0BwxfbRF7UoaAdNGAFoCEdAkh2Ve8f3e3V9lChoBkdAcxAHvMKTjmgHTR4BaAhHQJIec1dgOSZ1fZQoaAZHQHJRF1r6+FloB00LAWgIR0CSHz9QGfPHdX2UKGgGR0BwTU7V8Ti9aAdL9mgIR0CSH8sCDEm6dX2UKGgGR0BxVQiyIHkcaAdL+WgIR0CSH+KifxtpdX2UKGgGR0BzJoGwA2hqaAdNFQFoCEdAkiAMU7CBPXV9lChoBkdAb3CSEDhcaGgHTRcBaAhHQJIg5BJI1+B1fZQoaAZHQHFSiCWeHzpoB00YAWgIR0CSIjyPMjeLdX2UKGgGR0Bvet2A5JbuaAdNEAFoCEdAkiKzoIOYpnV9lChoBkdAcBjSRKYiPmgHTTUBaAhHQJIyyff4yoJ1fZQoaAZHQHBUth7Vrh1oB01zAWgIR0CSM2TVUdaMdX2UKGgGR0BwiH5uZThpaAdNQgFoCEdAkjTyIpH7QHV9lChoBkdAcEpLKmsNlWgHTTMBaAhHQJI1V0Qsf7t1fZQoaAZHQHEv/4ZdfLNoB00dAWgIR0CSNXtZFG5MdX2UKGgGR0Bx6MYTCcgAaAdNIwFoCEdAkjXJNTLntHV9lChoBkdAcm8Gs3hn8WgHS/VoCEdAkjaTRMN+b3V9lChoBkdAc0i/TspobmgHS/RoCEdAkjdWS6lLvnV9lChoBkdAcYvYPXkHU2gHTTcBaAhHQJI3z1jAi3Z1fZQoaAZHQG9uzRQaaThoB00OAWgIR0CSOPRVIZqEdX2UKGgGR0BxyBXko4MnaAdNMwFoCEdAkjn4ldC3PXV9lChoBkdAcrCc2zfJm2gHS/NoCEdAkjqww482aXV9lChoBkdAchRJrLyMDWgHTS0BaAhHQJI628XenAJ1fZQoaAZHQHL8MEeQuEpoB00IAWgIR0CSOvXGff4zdX2UKGgGR0Blw6dDpkf+aAdN6ANoCEdAkjuJaiblR3V9lChoBkdAco6kkrwvx2gHS/9oCEdAkjvGJN0vG3V9lChoBkdActzCtA9mpWgHTRcBaAhHQJI7/BbfP5Z1fZQoaAZHQHGhKx1PnCBoB017AWgIR0CSPC37UG3XdX2UKGgGR0Bwam6QNkOJaAdNDAFoCEdAkj1sl5WzW3V9lChoBkdAUx/0RODaoWgHS7hoCEdAkj2Br30wrXV9lChoBkdAbVh+1Bt1p2gHTRQBaAhHQJI+DkeZG8V1fZQoaAZHQHJMweii7CloB00gAWgIR0CSPkrR0EHMdX2UKGgGR0Bxdjpqynk1aAdNKAFoCEdAkj7bXYlIE3V9lChoBkdAcE3T+NtIkWgHTSABaAhHQJI/VW+49X91fZQoaAZHQAjZhScbzbxoB0veaAhHQJI/mSfUWmB1fZQoaAZHQHJJeb/ffoBoB00HAWgIR0CSQmkH2RJVdX2UKGgGR0BvTwPmPo3aaAdNCgFoCEdAkkKtu+AVf3V9lChoBkdAbR5KWcBltmgHTYEBaAhHQJJDAtJ4B3l1fZQoaAZHQHJHN8iOeatoB00GAWgIR0CSQ0YL9deIdX2UKGgGR0Bwt9P420iRaAdNJgFoCEdAkkOtcGC7LHV9lChoBkdAb+jPBzmwJWgHTRwBaAhHQJJEKoZQ53l1fZQoaAZHQHJ63iiqQzVoB00EAWgIR0CSRT+6iCardX2UKGgGR0Bw4L9Q40djaAdNdwFoCEdAkkVQ0j1PFnV9lChoBkdAc5MSW7e2u2gHTUIBaAhHQJJFk98qnWJ1fZQoaAZHQHKtGhmGucNoB0v9aAhHQJJFsV45cTt1fZQoaAZHQHL1ykbgjyFoB00cAWgIR0CSRf/iYLLIdX2UKGgGR0Bw6ohV2icoaAdNEgFoCEdAkkZ5aiblR3V9lChoBkdAcFRrTpgTiGgHTWwBaAhHQJJG6+ZgG8p1fZQoaAZHQG3UXBguyu9oB0v8aAhHQJJG7M7lq8F1fZQoaAZHQHE9zSofjjtoB00bAWgIR0CSR0VYp2ECdX2UKGgGR0ByO2sMiKR/aAdNIwFoCEdAkkgZHiFTN3V9lChoBkdAbgvB8hLXc2gHTQABaAhHQJJJyWHDaXd1fZQoaAZHQHCtaVyFPBVoB00HAWgIR0CSSuAOavzOdX2UKGgGR0ByGItvn8sMaAdNHQFoCEdAkkthUR3/xXV9lChoBkdAcD46ZH/cWWgHS+9oCEdAkkxRyKekHnV9lChoBkdAcnOFjd56dGgHS/hoCEdAkk0kXtShrXV9lChoBkdAb+c/xlQMyGgHTQwBaAhHQJJNVA6dUbV1fZQoaAZHQHBxIbKifxtoB01CAWgIR0CSTXevIOpbdX2UKGgGR0BxHheE7GNraAdNFAFoCEdAkk6NbcGke3V9lChoBkdAcAuvTw2ETWgHTSgBaAhHQJJOr/6wdKd1fZQoaAZHQHJqsenyd4FoB00dAWgIR0CST1v60pmVdX2UKGgGR0By7+6DoQnQaAdNBQFoCEdAkk+M3++/QHV9lChoBkdAbz6LvTgEU2gHTRMBaAhHQJJPjX/YJ3R1fZQoaAZHQHEUFBY3eepoB000AWgIR0CSUIiT+vQodX2UKGgGR0BvTJ5HEuQIaAdNlAFoCEdAklCaWLP2PHV9lChoBkdAcYDOI68xsWgHTSoBaAhHQJJRpOvdM0x1fZQoaAZHQHG3IAbQ1JloB03vAWgIR0CSUeDye7L/dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}