--- base_model: ybelkada/flan-t5-xl-sharded-bf16 tags: - generated_from_trainer model-index: - name: flan-t5-xl-absa-multitask-rest results: [] --- # flan-t5-xl-absa-multitask-rest This model is a fine-tuned version of [ybelkada/flan-t5-xl-sharded-bf16](https://huggingface.co/ybelkada/flan-t5-xl-sharded-bf16) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.3549 | 0.32 | 200 | 3.5848 | | 1.5908 | 0.63 | 400 | 0.5331 | | 0.4981 | 0.95 | 600 | 0.3159 | | 0.351 | 1.27 | 800 | 0.2457 | | 0.2884 | 1.58 | 1000 | 0.2118 | | 0.2592 | 1.9 | 1200 | 0.2000 | | 0.2323 | 2.22 | 1400 | 0.1839 | | 0.2107 | 2.53 | 1600 | 0.1704 | | 0.2071 | 2.85 | 1800 | 0.1649 | | 0.1944 | 3.16 | 2000 | 0.1634 | | 0.1774 | 3.48 | 2200 | 0.1549 | | 0.1796 | 3.8 | 2400 | 0.1505 | | 0.1695 | 4.11 | 2600 | 0.1427 | | 0.1569 | 4.43 | 2800 | 0.1403 | | 0.1662 | 4.75 | 3000 | 0.1395 | | 0.15 | 5.06 | 3200 | 0.1351 | | 0.1448 | 5.38 | 3400 | 0.1283 | | 0.1444 | 5.7 | 3600 | 0.1302 | | 0.1506 | 6.01 | 3800 | 0.1237 | | 0.1321 | 6.33 | 4000 | 0.1264 | | 0.1318 | 6.65 | 4200 | 0.1269 | | 0.1298 | 6.96 | 4400 | 0.1207 | | 0.1273 | 7.28 | 4600 | 0.1224 | | 0.123 | 7.59 | 4800 | 0.1209 | | 0.1278 | 7.91 | 5000 | 0.1222 | | 0.1236 | 8.23 | 5200 | 0.1165 | | 0.1188 | 8.54 | 5400 | 0.1154 | | 0.1181 | 8.86 | 5600 | 0.1173 | | 0.1126 | 9.18 | 5800 | 0.1177 | | 0.113 | 9.49 | 6000 | 0.1194 | | 0.1086 | 9.81 | 6200 | 0.1148 | | 0.1086 | 10.13 | 6400 | 0.1158 | | 0.1118 | 10.44 | 6600 | 0.1145 | | 0.105 | 10.76 | 6800 | 0.1125 | | 0.1119 | 11.08 | 7000 | 0.1146 | | 0.1007 | 11.39 | 7200 | 0.1123 | | 0.114 | 11.71 | 7400 | 0.1127 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2