File size: 8,871 Bytes
a164e13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
# Copyright (C) 2024 Charles O. Goddard
#
# This software is free software: you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This software is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see http://www.gnu.org/licenses/.
import binascii
import logging
import os
import os.path
from typing import (
Any,
Callable,
Dict,
Generic,
Iterator,
List,
Mapping,
Optional,
Tuple,
Union,
get_args,
)
import huggingface_hub
import immutables
import peft
import torch
import transformers
from pydantic import BaseModel, model_validator
from pydantic_core import core_schema
from transformers import AutoConfig, PretrainedConfig
from typing_extensions import TypeVar
from mergekit.io import LazyTensorLoader, ShardedTensorIndex
class ModelPath(BaseModel, frozen=True):
path: str
revision: Optional[str] = None
@model_validator(mode="before")
def validate_string(cls, value):
if isinstance(value, str):
at_ct = value.count("@")
if at_ct > 1:
raise RuntimeError(f"Invalid model path - multiple @: {value}")
elif at_ct == 1:
path, rev = value.split("@")
return {"path": path, "revision": rev}
else:
return {"path": value}
return value
def __str__(self):
if self.revision:
return f"{self.path}@{self.revision}"
return self.path
def _unique_id(self):
return (
os.path.basename(self.path)
+ "_"
+ str(binascii.crc32(self.__str__().encode()))
)
class ModelReference(BaseModel, frozen=True):
"""A reference to a language model.
Can be a hf hub path (username/repo), or local. Optionally includes a LoRA."""
model: ModelPath
lora: Optional[ModelPath] = None
def merged(
self, cache_dir: Optional[str] = None, trust_remote_code: bool = False
) -> "ModelReference":
"""Merge the LoRA if applicable and return a reference to the result."""
if not self.lora:
return self
if not cache_dir:
raise RuntimeError("Need to specify cache dir to merge adapters")
out_path = os.path.join(
cache_dir,
self.model._unique_id() + "_" + self.lora._unique_id(),
)
if not os.path.exists(out_path):
os.makedirs(out_path, exist_ok=True)
logging.info(f"Loading {self.model} for merge...")
model = transformers.AutoModelForCausalLM.from_pretrained(
self.model.path,
revision=self.model.revision,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
trust_remote_code=trust_remote_code,
)
model = peft.PeftModel.from_pretrained(
model, self.lora.path, revision=self.lora.revision, is_trainable=False
)
logging.info(f"Merging {self.lora} into {self.model}")
model = model.merge_and_unload()
model.save_pretrained(out_path, safe_serialization=True)
del model
return ModelReference(model=out_path)
def config(self, trust_remote_code: bool = False) -> PretrainedConfig:
return AutoConfig.from_pretrained(
self.model.path,
revision=self.model.revision,
trust_remote_code=trust_remote_code,
)
def tensor_index(self, cache_dir: Optional[str] = None) -> ShardedTensorIndex:
assert self.lora is None
path = self.model.path
if not os.path.exists(path):
has_safetensors = any(
fn.lower().endswith(".safetensors")
for fn in huggingface_hub.list_repo_files(
path, repo_type="model", revision=self.model.revision
)
)
patterns = ["tokenizer.model", "*.json"]
if has_safetensors:
patterns.append("*.safetensors")
else:
patterns.append("*.bin")
path = huggingface_hub.snapshot_download(
path,
revision=self.model.revision,
cache_dir=cache_dir,
allow_patterns=patterns,
)
return ShardedTensorIndex.from_disk(path)
def lazy_loader(
self, cache_dir: Optional[str] = None, lazy_unpickle: bool = True
) -> LazyTensorLoader:
return LazyTensorLoader(
self.tensor_index(cache_dir),
lazy_unpickle=lazy_unpickle,
)
@model_validator(mode="before")
def validate_string(cls, value):
if isinstance(value, str):
chunks = value.split("+")
if len(chunks) == 1:
return {"model": value}
elif len(chunks) == 2:
return {"model": chunks[0], "lora": chunks[1]}
raise RuntimeError(f"Can't parse {value}")
return value
@classmethod
def parse(cls, value: str) -> "ModelReference":
"""Parse a ModelReference. Format: '<MODEL_PATH>(+<LORA_PATH>)?'"""
return ModelReference.model_validate(value)
def __str__(self) -> str:
if self.lora:
return f"{str(self.model)}+{str(self.lora)}"
return str(self.model)
def dtype_from_name(name: Optional[str]) -> torch.dtype:
if name.startswith("torch."):
name = name[len("torch.") :]
if name == "bfloat16":
return torch.bfloat16
elif name == "float16":
return torch.float16
elif name == "float32":
return torch.float32
raise RuntimeError(f'Unimplemented dtype "{name}"')
def rectify_embed_sizes(param_name: str, tensors: List[torch.Tensor]):
# TODO: use arch_info.embed_weights() instead
if ("lm_head" in param_name or "embed_tokens" in param_name) and all(
len(t.shape) == 2 for t in tensors
):
# special case - if lm_head.weight or embed_tokens.weight have a size
# mismatch, take the largest common submatrix of all of them
if take_common_submatrix(tensors):
logging.warning(
f"Using common submatrix of size {tensors[0].shape} for {param_name}"
)
def take_common_submatrix(tensors: List[torch.Tensor]) -> bool:
min_size = [None, None]
for t in tensors:
for idx in range(2):
if min_size[idx] is None or t.shape[idx] < min_size[idx]:
min_size[idx] = t.shape[idx]
if not all(t.shape == torch.Size(min_size) for t in tensors):
for idx in range(len(tensors)):
tensors[idx] = tensors[idx][: min_size[0], : min_size[1]]
return True
return False
def parse_kmb(value: Union[str, int]) -> int:
if isinstance(value, int):
return value
elif value.isnumeric():
return int(value)
elif value[-1].lower() == "k":
return int(value[:-1]) * 1000
elif value[-1].lower() == "m":
return int(value[:-1]) * 1000 * 1000
elif value[-1].lower() == "b":
return int(value[:-1]) * 1000 * 1000 * 1000
else:
raise ValueError(value)
T_K = TypeVar("T_K")
T_V = TypeVar("T_V")
class ImmutableMap(Generic[T_K, T_V]):
data: immutables.Map[T_K, T_V]
def __init__(self, data: Mapping[T_K, T_V]):
self.data = data
@classmethod
def __get_pydantic_core_schema__(
cls, source: Any, handler: Callable[[Any], core_schema.CoreSchema]
) -> core_schema.CoreSchema:
instance_schema = core_schema.is_instance_schema(cls)
args = get_args(source)
if args:
dict_schema = handler(Dict[args[0], args[1]])
else:
dict_schema = handler(Dict)
non_instance_schema = core_schema.with_info_after_validator_function(
lambda value, _info: immutables.Map(value), dict_schema
)
return core_schema.union_schema([instance_schema, non_instance_schema])
def __iter__(self):
return self.data.__iter__()
def __getitem__(self, key: T_K) -> T_V:
return self.data[key]
def __len__(self) -> int:
return len(self.data)
def keys(self) -> Iterator[T_K]:
return self.data.keys()
def items(self) -> Iterator[Tuple[T_K, T_V]]:
return self.data.items()
def values(self) -> Iterator[T_V]:
return self.data.values()
|