File size: 6,979 Bytes
a164e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright (C) 2024 Charles O. Goddard
#
# This software is free software: you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This software is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see http://www.gnu.org/licenses/.

from typing import Any, Dict, Iterable, List, Optional, Tuple, Union

import yaml
from pydantic import BaseModel, model_validator
from typing_extensions import TypeAlias

from mergekit.common import ModelReference

ScalarOrGradient: TypeAlias = Union[float, List[float]]


class ConditionalParameter(BaseModel):
    value: ScalarOrGradient
    filter: Optional[str] = None


ParameterSetting: TypeAlias = Union[
    ConditionalParameter, List[ConditionalParameter], ScalarOrGradient
]


def evaluate_setting(
    tensor_name: str, setting: ParameterSetting, t: float = 0
) -> float:
    if isinstance(setting, (float, int, bool, str)):
        return setting
    elif isinstance(setting, list):
        if all(isinstance(e, (int, float)) for e in setting):
            scaled = t * (len(setting) - 1)
            i0 = int(scaled)
            i1 = min(len(setting) - 1, i0 + 1)
            frac = scaled - i0

            return (1 - frac) * setting[i0] + frac * setting[i1]
        elif all(isinstance(e, (float, int, bool, str)) for e in setting):
            return setting[int(t * (len(setting) - 1))]
        else:
            for cond in setting:
                if (
                    (cond.filter is None)
                    or (cond.filter == "*")
                    or (tensor_name and cond.filter in tensor_name)
                ):
                    res = evaluate_setting(tensor_name, cond.value, t)
                    return res
    else:
        raise RuntimeError(f"Unexpected setting value: {setting}")
    return None


class InputSliceDefinition(BaseModel):
    model: ModelReference
    layer_range: Tuple[int, int]
    parameters: Optional[Dict[str, ParameterSetting]] = None


class InputModelDefinition(BaseModel):
    model: ModelReference
    parameters: Optional[Dict[str, ParameterSetting]] = None


class OutputSliceDefinition(BaseModel):
    sources: List[InputSliceDefinition]
    base_model: Optional[ModelReference] = None
    residual_weight: Optional[float] = None
    parameters: Optional[Dict[str, ParameterSetting]] = None


class MergeConfiguration(BaseModel):
    merge_method: str
    slices: Optional[List[OutputSliceDefinition]] = None
    models: Optional[List[InputModelDefinition]] = None
    parameters: Optional[Dict[str, ParameterSetting]] = None
    base_model: Optional[ModelReference] = None
    dtype: Optional[str] = None
    tokenizer_source: Optional[str] = None

    def referenced_models(self) -> List[ModelReference]:
        models = set()
        if self.base_model:
            models.add(self.base_model)
        if self.models:
            for model_in in self.models:
                models.add(model_in.model)
        if self.slices:
            for s in self.slices:
                for src in s.sources:
                    models.add(src.model)
        return list(models)

    @model_validator(mode="after")
    def validate_inputs(self):
        if ((not self.slices) and (not self.models)) or (self.slices and self.models):
            raise RuntimeError("Must specify either output slices or models to merge")
        return self

    def to_yaml(self) -> str:
        return yaml.dump(
            self.model_dump(exclude_defaults=True, mode="json"),
            Dumper=ConfigYamlDumper,
        ).rstrip()


class ConfigReader(BaseModel):
    config: MergeConfiguration
    t: float
    tensor_name: Optional[str] = None
    slice_out: Optional[OutputSliceDefinition] = None

    @property
    def base_model(self) -> Optional[ModelReference]:
        if self.slice_out and self.slice_out.base_model:
            res = self.slice_out.base_model
        else:
            res = self.config.base_model

        return res

    def for_out_slice(self, slice: OutputSliceDefinition) -> "ConfigReader":
        return ConfigReader(
            config=self.config,
            t=self.t,
            tensor_name=self.tensor_name,
            slice_out=slice,
        )

    def for_tensor(self, tensor_name: str) -> "ConfigReader":
        return ConfigReader(
            config=self.config,
            t=self.t,
            tensor_name=tensor_name,
            slice_out=self.slice_out,
        )

    def with_t(self, t: float) -> "ConfigReader":
        return ConfigReader(
            config=self.config,
            t=t,
            tensor_name=self.tensor_name,
            slice_out=self.slice_out,
        )

    def parameter(
        self,
        name: str,
        model: Optional[ModelReference] = None,
        default: Any = None,
        required: bool = False,
    ) -> Any:
        if self.slice_out:
            if model:
                for s in self.slice_out.sources:
                    if s.model == model and s.parameters and name in s.parameters:
                        value = evaluate_setting(
                            self.tensor_name, s.parameters[name], self.t
                        )
                        if value is not None:
                            return value

            if self.slice_out.parameters and name in self.slice_out.parameters:
                value = evaluate_setting(
                    self.tensor_name, self.slice_out.parameters[name], self.t
                )
                if value is not None:
                    return value

        if self.config.parameters and name in self.config.parameters:
            value = evaluate_setting(
                self.tensor_name,
                self.config.parameters[name],
                self.t,
            )
            if value is not None:
                return value

        if required:
            path_paths = [str(s) for s in [model, self.tensor_name] if s]
            p = ".".join(path_paths)
            suffix = f" for {p}" if p else ""
            raise RuntimeError(f"Missing required parameter {name}{suffix}")
        return default


class ConfigYamlDumper(yaml.Dumper):
    """Custom YAML dumper to format lists of numbers in flow style."""

    def represent_list(self, data: Iterable[Any]) -> yaml.SequenceNode:
        flow_style = all(isinstance(e, (int, float)) for e in data)
        return self.represent_sequence(
            "tag:yaml.org,2002:seq", data, flow_style=flow_style
        )


ConfigYamlDumper.add_representer(list, ConfigYamlDumper.represent_list)