File size: 6,744 Bytes
a164e13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# Copyright (C) 2024 Charles O. Goddard
#
# This software is free software: you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This software is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see http://www.gnu.org/licenses/.
import logging
from enum import Enum
from typing import Any, Dict, List, Optional, Tuple
import torch
from pydantic import BaseModel
from typing_extensions import Literal
from mergekit.architecture import WeightInfo
from mergekit.common import ImmutableMap, ModelReference
from mergekit.graph import Task
from mergekit.io.tasks import GatherTensors
from mergekit.merge_methods.base import ConfigParameterDef, MergeMethod
from mergekit.sparsify import SparsificationMethod, sparsify
class ConsensusMethod(str, Enum):
count = "count"
sum = "sum"
class GeneralizedTaskArithmeticMerge(MergeMethod, BaseModel, frozen=True):
consensus_method: Optional[ConsensusMethod]
sparsification_method: Optional[SparsificationMethod]
default_normalize: bool
def parameters(self) -> List[ConfigParameterDef]:
return [
ConfigParameterDef(name="int8_mask", required=False, default_value=False),
ConfigParameterDef(
name="normalize", required=False, default_value=self.default_normalize
),
]
def tensor_parameters(self) -> List[ConfigParameterDef]:
return [
ConfigParameterDef(name="weight", required=True),
ConfigParameterDef(name="density", required=False, default_value=1.0),
]
def make_task(
self,
output_weight: WeightInfo,
tensors: GatherTensors,
base_model: Optional[ModelReference],
parameters: ImmutableMap[str, Any],
tensor_parameters: ImmutableMap[ModelReference, ImmutableMap[str, Any]],
) -> Task:
return GTATask(
method=self,
tensors=tensors,
base_model=base_model,
tensor_parameters=tensor_parameters,
int8_mask=parameters["int8_mask"],
normalize=parameters["normalize"],
out_tensor_name=output_weight.name,
)
class GTATask(Task[torch.Tensor]):
method: GeneralizedTaskArithmeticMerge
tensors: GatherTensors
base_model: ModelReference
out_tensor_name: str
tensor_parameters: ImmutableMap[ModelReference, Any]
int8_mask: bool
normalize: bool
def uses_accelerator(self) -> bool:
return True
def arguments(self) -> Dict[str, Task]:
return {"tensors": self.tensors}
def execute(
self,
tensors: Dict[ModelReference, torch.Tensor],
**_kwargs,
) -> torch.Tensor:
# collect task vectors
tvs, base = get_task_vectors(
self.out_tensor_name,
self.base_model,
tensors,
tensor_parameters=self.tensor_parameters.data,
)
if not tvs:
return base
# sparsify
if self.method.sparsification_method:
for tv_info in tvs:
tv_info["delta"] = sparsify(
tv_info["delta"],
density=tv_info["density"],
method=self.method.sparsification_method,
)
deltas = torch.stack([tv["delta"] for tv in tvs], dim=0)
weights = torch.tensor(
[tv["weight"] for tv in tvs], dtype=deltas.dtype, device=deltas.device
)
while len(deltas.shape) > len(weights.shape):
weights.unsqueeze_(-1)
weighted_deltas = deltas * weights
# get sign consensus and mix deltas
if self.method.consensus_method:
mask_dtype = torch.int8 if self.int8_mask else base.dtype
mask = get_mask(
weighted_deltas,
method=self.method.consensus_method,
mask_dtype=mask_dtype,
)
mixed_delta = (weighted_deltas * mask).sum(dim=0)
divisor = (weights * mask).sum(dim=0)
divisor[divisor == 0] = 1
else:
mixed_delta = weighted_deltas.sum(dim=0)
divisor = weights.sum(dim=0)
divisor[divisor.abs() < 1e-8] = 1
if self.normalize:
mixed_delta /= divisor
return (base + mixed_delta).to(base.dtype)
def get_task_vectors(
parameter_name: str,
base_model: ModelReference,
tensors: ImmutableMap[ModelReference, torch.Tensor],
tensor_parameters: ImmutableMap[ModelReference, ImmutableMap[str, Any]],
) -> Tuple[List[Dict[str, Any]], torch.Tensor]:
keys = list(tensors.keys())
base = tensors[base_model]
res = []
for model in keys:
if model == base_model:
continue
x = tensors[model].to(base.dtype)
if x.shape != base.shape:
if "lm_head" in parameter_name or "embed_tokens" in parameter_name:
x = x[: base.shape[0], : base.shape[1]]
logging.warning(f"Using submatrix of {model}:{parameter_name}")
else:
logging.warning(
f"skipping {model}:{parameter_name} due to size mismatch"
)
continue
delta = x - base
del x
del tensors[model]
d = {}
d["model"] = model
d["delta"] = delta
for p in tensor_parameters[model]:
d[p] = tensor_parameters[model][p]
res.append(d)
return res, base
def get_mask(
delta: torch.Tensor,
method: Literal["sum", "count"] = "sum",
mask_dtype: Optional[torch.dtype] = None,
):
"""Returns a mask determining which delta vectors should be merged
into the final model.
For the methodology described in the TIES paper use 'sum'. For a
simpler naive count of signs, use 'count'."""
if mask_dtype is None:
mask_dtype = delta.dtype
sign = delta.sign().to(mask_dtype)
if method == "sum":
sign_weight = delta.sum(dim=0)
majority_sign = (sign_weight >= 0).to(mask_dtype) * 2 - 1
del sign_weight
elif method == "count":
majority_sign = (sign.sum(dim=0) >= 0).to(mask_dtype) * 2 - 1
else:
raise RuntimeError(f'Unimplemented mask method "{method}"')
return sign == majority_sign
|