File size: 6,744 Bytes
a164e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# Copyright (C) 2024 Charles O. Goddard
#
# This software is free software: you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This software is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see http://www.gnu.org/licenses/.

import logging
from enum import Enum
from typing import Any, Dict, List, Optional, Tuple

import torch
from pydantic import BaseModel
from typing_extensions import Literal

from mergekit.architecture import WeightInfo
from mergekit.common import ImmutableMap, ModelReference
from mergekit.graph import Task
from mergekit.io.tasks import GatherTensors
from mergekit.merge_methods.base import ConfigParameterDef, MergeMethod
from mergekit.sparsify import SparsificationMethod, sparsify


class ConsensusMethod(str, Enum):
    count = "count"
    sum = "sum"


class GeneralizedTaskArithmeticMerge(MergeMethod, BaseModel, frozen=True):
    consensus_method: Optional[ConsensusMethod]
    sparsification_method: Optional[SparsificationMethod]
    default_normalize: bool

    def parameters(self) -> List[ConfigParameterDef]:
        return [
            ConfigParameterDef(name="int8_mask", required=False, default_value=False),
            ConfigParameterDef(
                name="normalize", required=False, default_value=self.default_normalize
            ),
        ]

    def tensor_parameters(self) -> List[ConfigParameterDef]:
        return [
            ConfigParameterDef(name="weight", required=True),
            ConfigParameterDef(name="density", required=False, default_value=1.0),
        ]

    def make_task(
        self,
        output_weight: WeightInfo,
        tensors: GatherTensors,
        base_model: Optional[ModelReference],
        parameters: ImmutableMap[str, Any],
        tensor_parameters: ImmutableMap[ModelReference, ImmutableMap[str, Any]],
    ) -> Task:
        return GTATask(
            method=self,
            tensors=tensors,
            base_model=base_model,
            tensor_parameters=tensor_parameters,
            int8_mask=parameters["int8_mask"],
            normalize=parameters["normalize"],
            out_tensor_name=output_weight.name,
        )


class GTATask(Task[torch.Tensor]):
    method: GeneralizedTaskArithmeticMerge
    tensors: GatherTensors
    base_model: ModelReference
    out_tensor_name: str
    tensor_parameters: ImmutableMap[ModelReference, Any]
    int8_mask: bool
    normalize: bool

    def uses_accelerator(self) -> bool:
        return True

    def arguments(self) -> Dict[str, Task]:
        return {"tensors": self.tensors}

    def execute(
        self,
        tensors: Dict[ModelReference, torch.Tensor],
        **_kwargs,
    ) -> torch.Tensor:
        # collect task vectors
        tvs, base = get_task_vectors(
            self.out_tensor_name,
            self.base_model,
            tensors,
            tensor_parameters=self.tensor_parameters.data,
        )
        if not tvs:
            return base

        # sparsify
        if self.method.sparsification_method:
            for tv_info in tvs:
                tv_info["delta"] = sparsify(
                    tv_info["delta"],
                    density=tv_info["density"],
                    method=self.method.sparsification_method,
                )

        deltas = torch.stack([tv["delta"] for tv in tvs], dim=0)
        weights = torch.tensor(
            [tv["weight"] for tv in tvs], dtype=deltas.dtype, device=deltas.device
        )
        while len(deltas.shape) > len(weights.shape):
            weights.unsqueeze_(-1)

        weighted_deltas = deltas * weights

        # get sign consensus and mix deltas
        if self.method.consensus_method:
            mask_dtype = torch.int8 if self.int8_mask else base.dtype
            mask = get_mask(
                weighted_deltas,
                method=self.method.consensus_method,
                mask_dtype=mask_dtype,
            )
            mixed_delta = (weighted_deltas * mask).sum(dim=0)
            divisor = (weights * mask).sum(dim=0)
            divisor[divisor == 0] = 1
        else:
            mixed_delta = weighted_deltas.sum(dim=0)
            divisor = weights.sum(dim=0)
            divisor[divisor.abs() < 1e-8] = 1

        if self.normalize:
            mixed_delta /= divisor

        return (base + mixed_delta).to(base.dtype)


def get_task_vectors(
    parameter_name: str,
    base_model: ModelReference,
    tensors: ImmutableMap[ModelReference, torch.Tensor],
    tensor_parameters: ImmutableMap[ModelReference, ImmutableMap[str, Any]],
) -> Tuple[List[Dict[str, Any]], torch.Tensor]:
    keys = list(tensors.keys())
    base = tensors[base_model]

    res = []
    for model in keys:
        if model == base_model:
            continue

        x = tensors[model].to(base.dtype)
        if x.shape != base.shape:
            if "lm_head" in parameter_name or "embed_tokens" in parameter_name:
                x = x[: base.shape[0], : base.shape[1]]
                logging.warning(f"Using submatrix of {model}:{parameter_name}")
            else:
                logging.warning(
                    f"skipping {model}:{parameter_name} due to size mismatch"
                )
                continue

        delta = x - base
        del x
        del tensors[model]

        d = {}
        d["model"] = model
        d["delta"] = delta
        for p in tensor_parameters[model]:
            d[p] = tensor_parameters[model][p]
        res.append(d)
    return res, base


def get_mask(
    delta: torch.Tensor,
    method: Literal["sum", "count"] = "sum",
    mask_dtype: Optional[torch.dtype] = None,
):
    """Returns a mask determining which delta vectors should be merged
    into the final model.

    For the methodology described in the TIES paper use 'sum'. For a
    simpler naive count of signs, use 'count'."""
    if mask_dtype is None:
        mask_dtype = delta.dtype

    sign = delta.sign().to(mask_dtype)

    if method == "sum":
        sign_weight = delta.sum(dim=0)
        majority_sign = (sign_weight >= 0).to(mask_dtype) * 2 - 1
        del sign_weight
    elif method == "count":
        majority_sign = (sign.sum(dim=0) >= 0).to(mask_dtype) * 2 - 1
    else:
        raise RuntimeError(f'Unimplemented mask method "{method}"')

    return sign == majority_sign