File size: 5,008 Bytes
a164e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright (C) 2024 Charles O. Goddard
#
# This software is free software: you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This software is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see http://www.gnu.org/licenses/.

from typing import Any, Dict, List, Optional, Union

import numpy as np
import torch

from mergekit.architecture import WeightInfo
from mergekit.common import ImmutableMap, ModelReference, rectify_embed_sizes
from mergekit.graph import Task
from mergekit.io.tasks import GatherTensors
from mergekit.merge_methods.base import ConfigParameterDef, MergeMethod


class SlerpTask(Task[torch.Tensor]):
    gather_tensors: GatherTensors
    base_model: ModelReference
    t: float
    parameter_name: str

    def uses_accelerator(self) -> bool:
        return True

    def arguments(self) -> Dict[str, Task]:
        return {"tensors": self.gather_tensors}

    def execute(self, tensors: Dict[ModelReference, torch.Tensor]) -> torch.Tensor:
        if len(tensors) == 1:
            return list(tensors.values())[0]
        elif len(tensors) != 2:
            raise RuntimeError("Slerp merge expects exactly two models")
        elif self.base_model not in tensors:
            raise RuntimeError("Base model not in input tensors")

        [a, b] = list(tensors.items())
        if a[0] != self.base_model:
            [a, b] = [b, a]
        prepped_tensors = [a[1], b[1]]

        rectify_embed_sizes(self.parameter_name, prepped_tensors)

        return (
            slerp(
                self.t,
                prepped_tensors[0],
                prepped_tensors[1],
            )
            .to(prepped_tensors[0].dtype)
            .to(prepped_tensors[0].device)
        )


class SlerpMerge(MergeMethod):
    def parameters(self) -> List[ConfigParameterDef]:
        return [ConfigParameterDef(name="t", required=True)]

    def make_task(
        self,
        *,
        output_weight: WeightInfo,
        tensors: GatherTensors,
        parameters: ImmutableMap[str, Any],
        base_model: Optional[ModelReference],
        **_kwargs,
    ) -> Task:
        return SlerpTask(
            gather_tensors=tensors,
            base_model=base_model,
            parameter_name=output_weight.name,
            t=parameters["t"],
        )


def lerp(
    t: float, v0: Union[np.ndarray, torch.Tensor], v1: Union[np.ndarray, torch.Tensor]
) -> Union[np.ndarray, torch.Tensor]:
    return (1 - t) * v0 + t * v1


def slerp(
    t: Union[float, np.ndarray],
    v0: Union[np.ndarray, torch.Tensor],
    v1: Union[np.ndarray, torch.Tensor],
    DOT_THRESHOLD: float = 0.9995,
    eps: float = 1e-8,
):
    """
    Spherical linear interpolation

    From: https://gist.github.com/dvschultz/3af50c40df002da3b751efab1daddf2c
    Args:
        t (float/np.ndarray): Float value between 0.0 and 1.0
        v0 (np.ndarray): Starting vector
        v1 (np.ndarray): Final vector
        DOT_THRESHOLD (float): Threshold for considering the two vectors as
                               colinear. Not recommended to alter this.
    Returns:
        v2 (np.ndarray): Interpolation vector between v0 and v1
    """
    is_torch = False
    if not isinstance(v0, np.ndarray):
        is_torch = True
        v0 = v0.detach().cpu().float().numpy()
    if not isinstance(v1, np.ndarray):
        is_torch = True
        v1 = v1.detach().cpu().float().numpy()

    # Copy the vectors to reuse them later
    v0_copy = np.copy(v0)
    v1_copy = np.copy(v1)

    # Normalize the vectors to get the directions and angles
    v0 = normalize(v0, eps)
    v1 = normalize(v1, eps)

    # Dot product with the normalized vectors (can't use np.dot in W)
    dot = np.sum(v0 * v1)

    # If absolute value of dot product is almost 1, vectors are ~colinear, so use lerp
    if np.abs(dot) > DOT_THRESHOLD:
        res = lerp(t, v0_copy, v1_copy)
        return maybe_torch(res, is_torch)

    # Calculate initial angle between v0 and v1
    theta_0 = np.arccos(dot)
    sin_theta_0 = np.sin(theta_0)

    # Angle at timestep t
    theta_t = theta_0 * t
    sin_theta_t = np.sin(theta_t)

    # Finish the slerp algorithm
    s0 = np.sin(theta_0 - theta_t) / sin_theta_0
    s1 = sin_theta_t / sin_theta_0
    res = s0 * v0_copy + s1 * v1_copy

    return maybe_torch(res, is_torch)


def maybe_torch(v: np.ndarray, is_torch: bool):
    if is_torch:
        return torch.from_numpy(v)
    return v


def normalize(v: np.ndarray, eps: float):
    norm_v = np.linalg.norm(v)
    if norm_v > eps:
        v = v / norm_v
    return v