File size: 5,056 Bytes
a164e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright (C) 2024 Charles O. Goddard
#
# This software is free software: you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This software is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see http://www.gnu.org/licenses/.

from typing import Any, Dict, List, Optional

import torch
from pydantic import BaseModel

from mergekit.common import ImmutableMap, ModelReference
from mergekit.graph import Task
from mergekit.io.tasks import GatherTensors
from mergekit.merge_methods.base import ConfigParameterDef, MergeMethod
from mergekit.merge_methods.slerp import slerp
from mergekit.tokenizer import BuildTokenizer, TokenizerInfo


class TokenizerPermutationMergeTask(Task[torch.Tensor]):
    tokenizer_task: BuildTokenizer
    gather_tensors: GatherTensors
    base_model: Optional[ModelReference]
    use_slerp: bool
    slerp_t: Optional[float]
    tensor_parameters: ImmutableMap[ModelReference, Any]

    def uses_accelerator(self) -> bool:
        return True

    def arguments(self) -> Dict[str, Task]:
        return {"tokenizer_info": self.tokenizer_task, "tensors": self.gather_tensors}

    def execute(
        self, tokenizer_info: TokenizerInfo, tensors: Dict[ModelReference, torch.Tensor]
    ) -> torch.Tensor:
        if not tensors:
            return None
        if len(tensors) == 1:
            return list(tensors.values())[0]

        if self.use_slerp and self.slerp_t is None:
            raise RuntimeError("Must set t to use embed_slerp")

        models = []
        expanded = []
        masks = []
        weights = []
        for model in tensors:
            models.append(model)

            x = tensors[model]
            p = tokenizer_info.permutations[model]

            xp = torch.zeros((len(p), x.shape[-1]), dtype=x.dtype, device=x.device)
            mask = torch.zeros((len(p),), dtype=torch.bool, device=x.device)
            for out_idx in p:
                in_idx = p[out_idx]
                if in_idx < 0:
                    continue

                xp[out_idx, :] = x[in_idx, :]
                mask[out_idx] = 1

            expanded.append(xp)
            masks.append(mask)

            is_base = model == self.base_model
            if self.use_slerp:
                weight = (1.0 - self.slerp_t) if is_base else self.slerp_t
            else:
                weight = self.tensor_parameters[model]["weight"]

            weights.append(weight)

        expanded = torch.stack(expanded, dim=0)
        masks = torch.stack(masks, dim=0).unsqueeze(-1)
        weights = (
            torch.tensor(weights, dtype=expanded.dtype, device=expanded.device)
            .unsqueeze(-1)
            .unsqueeze(-1)
        )

        total_weight = (masks * weights).sum(dim=0)
        scale = 1 / total_weight
        scale[total_weight.abs() < 1e-8] = 0

        linear_merged = (expanded * weights * masks).sum(dim=0) * scale

        if self.use_slerp:
            if expanded.shape[0] != 2:
                raise RuntimeError("SLERP takes exactly two models")

            if models[0] == self.base_model:
                v0 = expanded[0, ...]
                v1 = expanded[1, ...]
            else:
                v0 = expanded[1, ...]
                v1 = expanded[0, ...]

            res = slerp(self.slerp_t, v0, v1)
            need_linear = (masks.sum(dim=0) != 2).squeeze(dim=-1)
            res[need_linear, :] = linear_merged[need_linear, :].to(
                device=res.device, dtype=res.dtype
            )
            return res

        return linear_merged


class TokenizerPermutationMerge(MergeMethod, BaseModel):
    tokenizer_task: BuildTokenizer

    def parameters(self) -> List[ConfigParameterDef]:
        return [
            ConfigParameterDef(name="t", required=False),
            ConfigParameterDef(name="embed_slerp", required=False, default_value=False),
        ]

    def tensor_parameters(self) -> List[ConfigParameterDef]:
        return [
            ConfigParameterDef(name="weight", required=False),
        ]

    def make_task(
        self,
        *,
        tensors: GatherTensors,
        parameters: Dict[str, Any],
        tensor_parameters: ImmutableMap[ModelReference, ImmutableMap[str, Any]],
        base_model: Optional[ModelReference],
        **_kwargs,
    ) -> Task:
        return TokenizerPermutationMergeTask(
            base_model=base_model,
            tokenizer_task=self.tokenizer_task,
            gather_tensors=tensors,
            use_slerp=parameters["embed_slerp"],
            slerp_t=parameters["t"],
            tensor_parameters=tensor_parameters,
        )