File size: 10,175 Bytes
a164e13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
# Copyright (C) 2024 Charles O. Goddard
#
# This software is free software: you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This software is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see http://www.gnu.org/licenses/.
import logging
from functools import lru_cache
from typing import Any, List, Optional
from mergekit import merge_methods
from mergekit.architecture import (
ArchitectureInfo,
ConfiguredArchitectureInfo,
WeightInfo,
)
from mergekit.common import ImmutableMap, ModelReference
from mergekit.config import (
ConfigReader,
InputSliceDefinition,
MergeConfiguration,
OutputSliceDefinition,
)
from mergekit.graph import Task
from mergekit.io.tasks import (
FinalizeModel,
GatherTensors,
LoaderCache,
SaveTensor,
TensorWriterTask,
)
from mergekit.merge_methods import MergeMethod
from mergekit.merge_methods.tokenizer_permute import TokenizerPermutationMerge
from mergekit.options import MergeOptions
from mergekit.tokenizer import BuildTokenizer
class MergePlanner:
config: MergeConfiguration
arch_info: ArchitectureInfo
options: MergeOptions
out_model_config: Any
_writer_task: TensorWriterTask
_method: MergeMethod
_tasks: List[Task] = []
_current_layers: int = 0
_tokenizer_task: Optional[BuildTokenizer] = None
def __init__(
self,
config: MergeConfiguration,
arch_info: ArchitectureInfo,
out_path: str,
options: MergeOptions,
out_model_config: Any,
):
self.config = config
self.arch_info = arch_info
self.options = options
self.out_model_config = out_model_config
self._method = merge_methods.get(config.merge_method)
self._writer_task = TensorWriterTask(
out_path=out_path,
max_shard_size=options.out_shard_size,
safe_serialization=options.safe_serialization,
)
if config.tokenizer_source:
self._tokenizer_task = BuildTokenizer(
base_model=config.base_model,
referenced_models=tuple(config.referenced_models()),
tokenizer_source=config.tokenizer_source,
trust_remote_code=options.trust_remote_code,
)
@lru_cache
def model_arch_info(self, model: ModelReference):
return ConfiguredArchitectureInfo(
info=self.arch_info,
config=model.config(trust_remote_code=self.options.trust_remote_code),
)
def normalize_config(self):
base_model = self.config.base_model
# if models to merge are specified instead of output slices, compute them
if self.config.models:
if self.config.slices:
raise RuntimeError(
"Must specify either models to merge or output slices"
)
slices_in = []
base_included = False
for model_in in self.config.models:
if base_model and model_in.model == base_model:
base_included = True
model_info = self.model_arch_info(model_in.model)
slices_in.append(
InputSliceDefinition(
layer_range=[0, model_info.num_layers()],
model=model_in.model,
parameters=model_in.parameters,
)
)
if base_model and not base_included:
logging.info("Base model specified but not in input models - adding")
base_info = self.model_arch_info(base_model)
slices_in.append(
InputSliceDefinition(
layer_range=[0, base_info.num_layers()],
model=base_model,
)
)
self.config.slices = [OutputSliceDefinition(sources=slices_in)]
self.config.models = None
def plan_tensor(
self,
weight: WeightInfo,
weights_in: List[WeightInfo],
models: List[ModelReference],
cfg_reader: ConfigReader,
):
if weight.optional:
# check if any input weights are present
any_weight = False
for model, w_in in zip(models, weights_in):
index = LoaderCache().get(model).index
if w_in.name in index.tensor_paths:
any_weight = True
break
if not any_weight:
logging.info(f"Skipping optional weight {weight.name}")
return
tensor_merge_method = self._method
if self._tokenizer_task and weight.is_embed:
tensor_merge_method = TokenizerPermutationMerge(
tokenizer_task=self._tokenizer_task
)
cfg_g = cfg_reader.for_tensor(weight.name)
global_params = {}
for p in tensor_merge_method.parameters():
global_params[p.name] = cfg_g.parameter(
p.name, model=None, required=p.required, default=p.default_value
)
tensor_params = {}
for model, weight_in in zip(models, weights_in):
is_base = model == cfg_reader.config.base_model
tensor_params[model] = {}
cfg_m = cfg_reader.for_tensor(weight_in.name)
for p in tensor_merge_method.tensor_parameters():
tensor_params[model][p.name] = cfg_m.parameter(
p.name,
model=model,
required=p.required and not is_base,
default=p.default_value,
)
gather_tensors = GatherTensors(
weight_info=ImmutableMap(data=dict(zip(models, weights_in))),
dtype=self.config.dtype,
)
tensor_task = tensor_merge_method.make_task(
output_weight=weight,
tensors=gather_tensors,
parameters=ImmutableMap(data=global_params),
tensor_parameters=ImmutableMap(
data={
key: ImmutableMap(data=tensor_params[key]) for key in tensor_params
}
),
base_model=self.config.base_model,
)
save_task = SaveTensor(
tensor_name=weight.name,
tensor_task=tensor_task,
writer_task=self._writer_task,
clone=self.options.clone_tensors,
optional=weight.optional,
)
self._tasks.append(save_task)
def plan_layer(
self,
sources: List[InputSliceDefinition],
layer_offset: int,
t: float,
cfg_reader: ConfigReader,
):
weights_out: List[WeightInfo] = self.arch_info.layer_weights(
index=self._current_layers,
config=self.out_model_config,
)
weights_in: List[List[WeightInfo]] = [
self.model_arch_info(s.model).layer_weights(
index=s.layer_range[0] + layer_offset
)
for s in sources
]
for idx, w_o in enumerate(weights_out):
self.plan_tensor(
weight=w_o,
weights_in=[weights_in[j][idx] for j in range(len(weights_in))],
models=[s.model for s in sources],
cfg_reader=cfg_reader.with_t(t),
)
self._current_layers += 1
def plan_slice(self, definition: OutputSliceDefinition):
slice_lengths = [
s.layer_range[1] - s.layer_range[0] for s in definition.sources
]
if not all(s == slice_lengths[0] for s in slice_lengths):
raise RuntimeError(
"All inputs to a slice must contain the same number of layers"
)
num_layers = slice_lengths[0]
cfg_reader = ConfigReader(config=self.config, slice_out=definition, t=0)
for idx in range(num_layers):
# compute t for interpolated gradients
if num_layers > 1:
t = idx / (num_layers - 1)
else:
t = 1
self.plan_layer(
definition.sources,
layer_offset=idx,
t=t,
cfg_reader=cfg_reader,
)
def plan(self):
self.normalize_config()
self._tasks = []
for weight_info in self.arch_info.pre_weights(config=self.out_model_config):
self.plan_tensor(
weight_info,
[weight_info] * len(self.config.slices[0].sources),
[s.model for s in self.config.slices[0].sources],
ConfigReader(
config=self.config,
t=0,
tensor_name=weight_info.name,
).for_out_slice(self.config.slices[0]),
)
for out_slice in self.config.slices:
self.plan_slice(out_slice)
for weight_info in self.arch_info.post_weights(config=self.out_model_config):
self.plan_tensor(
weight_info,
[weight_info] * len(self.config.slices[-1].sources),
[s.model for s in self.config.slices[-1].sources],
ConfigReader(
config=self.config,
t=1,
tensor_name=weight_info.name,
).for_out_slice(self.config.slices[-1]),
)
self._tasks.append(
FinalizeModel(
tensor_save_tasks=tuple(self._tasks), writer_task=self._writer_task
)
)
res = list(self._tasks)
if self._tokenizer_task:
res.append(self._tokenizer_task)
return res
|