File size: 10,175 Bytes
a164e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Copyright (C) 2024 Charles O. Goddard
#
# This software is free software: you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This software is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see http://www.gnu.org/licenses/.

import logging
from functools import lru_cache
from typing import Any, List, Optional

from mergekit import merge_methods
from mergekit.architecture import (
    ArchitectureInfo,
    ConfiguredArchitectureInfo,
    WeightInfo,
)
from mergekit.common import ImmutableMap, ModelReference
from mergekit.config import (
    ConfigReader,
    InputSliceDefinition,
    MergeConfiguration,
    OutputSliceDefinition,
)
from mergekit.graph import Task
from mergekit.io.tasks import (
    FinalizeModel,
    GatherTensors,
    LoaderCache,
    SaveTensor,
    TensorWriterTask,
)
from mergekit.merge_methods import MergeMethod
from mergekit.merge_methods.tokenizer_permute import TokenizerPermutationMerge
from mergekit.options import MergeOptions
from mergekit.tokenizer import BuildTokenizer


class MergePlanner:
    config: MergeConfiguration
    arch_info: ArchitectureInfo
    options: MergeOptions
    out_model_config: Any
    _writer_task: TensorWriterTask
    _method: MergeMethod
    _tasks: List[Task] = []
    _current_layers: int = 0
    _tokenizer_task: Optional[BuildTokenizer] = None

    def __init__(
        self,
        config: MergeConfiguration,
        arch_info: ArchitectureInfo,
        out_path: str,
        options: MergeOptions,
        out_model_config: Any,
    ):
        self.config = config
        self.arch_info = arch_info
        self.options = options
        self.out_model_config = out_model_config
        self._method = merge_methods.get(config.merge_method)
        self._writer_task = TensorWriterTask(
            out_path=out_path,
            max_shard_size=options.out_shard_size,
            safe_serialization=options.safe_serialization,
        )

        if config.tokenizer_source:
            self._tokenizer_task = BuildTokenizer(
                base_model=config.base_model,
                referenced_models=tuple(config.referenced_models()),
                tokenizer_source=config.tokenizer_source,
                trust_remote_code=options.trust_remote_code,
            )

    @lru_cache
    def model_arch_info(self, model: ModelReference):
        return ConfiguredArchitectureInfo(
            info=self.arch_info,
            config=model.config(trust_remote_code=self.options.trust_remote_code),
        )

    def normalize_config(self):
        base_model = self.config.base_model

        # if models to merge are specified instead of output slices, compute them
        if self.config.models:
            if self.config.slices:
                raise RuntimeError(
                    "Must specify either models to merge or output slices"
                )

            slices_in = []
            base_included = False

            for model_in in self.config.models:
                if base_model and model_in.model == base_model:
                    base_included = True

                model_info = self.model_arch_info(model_in.model)
                slices_in.append(
                    InputSliceDefinition(
                        layer_range=[0, model_info.num_layers()],
                        model=model_in.model,
                        parameters=model_in.parameters,
                    )
                )

            if base_model and not base_included:
                logging.info("Base model specified but not in input models - adding")
                base_info = self.model_arch_info(base_model)
                slices_in.append(
                    InputSliceDefinition(
                        layer_range=[0, base_info.num_layers()],
                        model=base_model,
                    )
                )

            self.config.slices = [OutputSliceDefinition(sources=slices_in)]
            self.config.models = None

    def plan_tensor(
        self,
        weight: WeightInfo,
        weights_in: List[WeightInfo],
        models: List[ModelReference],
        cfg_reader: ConfigReader,
    ):
        if weight.optional:
            # check if any input weights are present
            any_weight = False
            for model, w_in in zip(models, weights_in):
                index = LoaderCache().get(model).index
                if w_in.name in index.tensor_paths:
                    any_weight = True
                    break

            if not any_weight:
                logging.info(f"Skipping optional weight {weight.name}")
                return

        tensor_merge_method = self._method
        if self._tokenizer_task and weight.is_embed:
            tensor_merge_method = TokenizerPermutationMerge(
                tokenizer_task=self._tokenizer_task
            )

        cfg_g = cfg_reader.for_tensor(weight.name)
        global_params = {}
        for p in tensor_merge_method.parameters():
            global_params[p.name] = cfg_g.parameter(
                p.name, model=None, required=p.required, default=p.default_value
            )

        tensor_params = {}
        for model, weight_in in zip(models, weights_in):
            is_base = model == cfg_reader.config.base_model
            tensor_params[model] = {}
            cfg_m = cfg_reader.for_tensor(weight_in.name)
            for p in tensor_merge_method.tensor_parameters():
                tensor_params[model][p.name] = cfg_m.parameter(
                    p.name,
                    model=model,
                    required=p.required and not is_base,
                    default=p.default_value,
                )

        gather_tensors = GatherTensors(
            weight_info=ImmutableMap(data=dict(zip(models, weights_in))),
            dtype=self.config.dtype,
        )

        tensor_task = tensor_merge_method.make_task(
            output_weight=weight,
            tensors=gather_tensors,
            parameters=ImmutableMap(data=global_params),
            tensor_parameters=ImmutableMap(
                data={
                    key: ImmutableMap(data=tensor_params[key]) for key in tensor_params
                }
            ),
            base_model=self.config.base_model,
        )
        save_task = SaveTensor(
            tensor_name=weight.name,
            tensor_task=tensor_task,
            writer_task=self._writer_task,
            clone=self.options.clone_tensors,
            optional=weight.optional,
        )
        self._tasks.append(save_task)

    def plan_layer(
        self,
        sources: List[InputSliceDefinition],
        layer_offset: int,
        t: float,
        cfg_reader: ConfigReader,
    ):
        weights_out: List[WeightInfo] = self.arch_info.layer_weights(
            index=self._current_layers,
            config=self.out_model_config,
        )
        weights_in: List[List[WeightInfo]] = [
            self.model_arch_info(s.model).layer_weights(
                index=s.layer_range[0] + layer_offset
            )
            for s in sources
        ]

        for idx, w_o in enumerate(weights_out):
            self.plan_tensor(
                weight=w_o,
                weights_in=[weights_in[j][idx] for j in range(len(weights_in))],
                models=[s.model for s in sources],
                cfg_reader=cfg_reader.with_t(t),
            )

        self._current_layers += 1

    def plan_slice(self, definition: OutputSliceDefinition):
        slice_lengths = [
            s.layer_range[1] - s.layer_range[0] for s in definition.sources
        ]
        if not all(s == slice_lengths[0] for s in slice_lengths):
            raise RuntimeError(
                "All inputs to a slice must contain the same number of layers"
            )
        num_layers = slice_lengths[0]

        cfg_reader = ConfigReader(config=self.config, slice_out=definition, t=0)
        for idx in range(num_layers):
            # compute t for interpolated gradients
            if num_layers > 1:
                t = idx / (num_layers - 1)
            else:
                t = 1

            self.plan_layer(
                definition.sources,
                layer_offset=idx,
                t=t,
                cfg_reader=cfg_reader,
            )

    def plan(self):
        self.normalize_config()
        self._tasks = []

        for weight_info in self.arch_info.pre_weights(config=self.out_model_config):
            self.plan_tensor(
                weight_info,
                [weight_info] * len(self.config.slices[0].sources),
                [s.model for s in self.config.slices[0].sources],
                ConfigReader(
                    config=self.config,
                    t=0,
                    tensor_name=weight_info.name,
                ).for_out_slice(self.config.slices[0]),
            )

        for out_slice in self.config.slices:
            self.plan_slice(out_slice)

        for weight_info in self.arch_info.post_weights(config=self.out_model_config):
            self.plan_tensor(
                weight_info,
                [weight_info] * len(self.config.slices[-1].sources),
                [s.model for s in self.config.slices[-1].sources],
                ConfigReader(
                    config=self.config,
                    t=1,
                    tensor_name=weight_info.name,
                ).for_out_slice(self.config.slices[-1]),
            )

        self._tasks.append(
            FinalizeModel(
                tensor_save_tasks=tuple(self._tasks), writer_task=self._writer_task
            )
        )
        res = list(self._tasks)
        if self._tokenizer_task:
            res.append(self._tokenizer_task)
        return res