File size: 20,702 Bytes
a164e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
# Copyright (C) 2024 Charles O. Goddard
#
# This software is free software: you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This software is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see http://www.gnu.org/licenses/.

import enum
import logging
import sys
from typing import Dict, Generator, List, Optional, Tuple, Union

import click
import torch
import tqdm
import transformers
from typing_extensions import TypeAlias

from mergekit.architecture import (
    ConfiguredArchitectureInfo,
    WeightInfo,
    get_architecture_info,
)
from mergekit.common import ModelReference
from mergekit.io import TensorWriter
from mergekit.io.tasks import LoaderCache
from mergekit.options import MergeOptions, add_merge_options

LOG = logging.getLogger(__name__)


@click.command("mergekit-tokensurgeon")
@click.argument("model", type=str)
@click.argument("donor", type=str)
@click.argument("out_path", type=str)
@click.option(
    "-v", "verbosity", count=True, help="Verbose logging", default=0, show_default=False
)
@click.option(
    "-k",
    type=int,
    default=8,
    help="Number of nearest neighbours to use for embedding interpolation",
)
@click.option(
    "--barycentric/--no-barycentric",
    "-b/-nb",
    is_flag=True,
    default=False,
    help="Use barycentric interpolation instead of distance weighting",
)
@click.option(
    "--cosine-similarity/--no-cosine-similarity",
    "-c/-nc",
    is_flag=True,
    default=False,
    help="Use cosine similarity for nearest neighbour search",
)
@add_merge_options
def main(
    model: str,
    donor: str,
    out_path: str,
    verbosity: int,
    k: int,
    barycentric: bool,
    cosine_similarity: bool,
    merge_options: MergeOptions,
):
    """
    Replace the tokenizer of a model with that of a donor model. Attempts to
    approximate embeddings for tokens that are in the donor model but not the
    original model.

    This greatly reduces the amount of training required to settle in the new
    embeddings, and potentially removes the need for fine-tuning entirely for
    tokenizers that are sufficiently similar.

    The model and donor model must have the same architecture.
    """
    log_level = logging.WARNING
    if verbosity == 1:
        log_level = logging.INFO
    elif verbosity > 1:
        log_level = logging.DEBUG
    logging.basicConfig(level=log_level)
    LOG.warning("This tool is experimental and may produce unexpected results.")

    model = ModelReference.model_validate(model)
    donor = ModelReference.model_validate(donor)

    cache = LoaderCache()
    cache.setup(options=merge_options)

    device = "cuda" if merge_options.cuda else "cpu"

    arch_info, donor_cfg = validate_architecture(model, donor, merge_options)
    embed_info, lm_head_info = get_embedding_info(model, merge_options)
    donor_embed_info, donor_lm_head_info = get_embedding_info(donor, merge_options)

    _, old_vocab = load_tokenizer(model, merge_options)
    tokenizer, new_vocab = load_tokenizer(donor, merge_options)
    common_tokens = list(set(old_vocab.keys()) & set(new_vocab.keys()))

    old_embed = cache.get(model).get_tensor(
        embed_info.name, aliases=embed_info.aliases, device=device
    )
    donor_embed = cache.get(donor).get_tensor(
        donor_embed_info.name, aliases=donor_embed_info.aliases, device=device
    )

    (_, hidden_size_0) = old_embed.shape
    (_, hidden_size_1) = donor_embed.shape
    if hidden_size_1 != hidden_size_0:
        report_issue(
            f"Embedding sizes do not match: {hidden_size_0} vs {hidden_size_1}",
            error=not merge_options.allow_crimes,
        )

    min_overlap = max(hidden_size_0, hidden_size_1)
    if len(common_tokens) < min_overlap:
        report_issue(
            f"Common tokens ({len(common_tokens)}) less than embedding size ({min_overlap})",
            error=not merge_options.allow_crimes,
        )

    LOG.info("Computing new embeddings")
    new_embed = get_embeddings(
        old_embed,
        donor_embed,
        old_vocab,
        new_vocab,
        common_tokens,
        accept_prefix=False,
        k=k,
        barycentric=barycentric,
        cosine_similarity=cosine_similarity,
        name=embed_info.name,
    )

    if lm_head_info:
        old_lm_head = cache.get(model).get_tensor(
            lm_head_info.name, aliases=lm_head_info.aliases, device=device
        )
        donor_lm_head = cache.get(donor).get_tensor(
            donor_lm_head_info.name, aliases=donor_lm_head_info.aliases, device=device
        )

        LOG.info("Computing new lm_head embeddings")
        new_lm_head = get_embeddings(
            old_lm_head,
            donor_lm_head,
            old_vocab,
            new_vocab,
            common_tokens,
            accept_prefix=True,
            k=k,
            barycentric=barycentric,
            cosine_similarity=cosine_similarity,
            name=lm_head_info.name,
        )

    # Save out the new model
    LOG.info(f"Saving new model to {out_path}")
    writer = TensorWriter(
        out_path,
        max_shard_size=merge_options.out_shard_size,
        safe_serialization=merge_options.safe_serialization,
    )
    for weight_info in tqdm.tqdm(arch_info.all_weights(), desc="Saving weights"):
        if weight_info.name == embed_info.name:
            tensor = new_embed
        elif lm_head_info is not None and weight_info.name == lm_head_info.name:
            tensor = new_lm_head
        else:
            tensor = cache.get(model).get_tensor(
                weight_info.name, aliases=weight_info.aliases
            )
        writer.save_tensor(weight_info.name, tensor, clone=merge_options.clone_tensors)
    writer.finalize()

    tokenizer.save_pretrained(out_path)
    cfg_out = arch_info.config
    try:
        cfg_out.vocab_size = tokenizer.vocab_size
    except AttributeError:
        LOG.error(
            "Could not set vocab size in config.json - you may need to update it manually."
        )
    for key in [
        "pad_token_id",
        "eos_token_id",
        "bos_token_id",
        "unk_token_id",
        "mask_token_id",
        "padding_side",
    ]:
        if hasattr(donor_cfg, key) and (value := getattr(donor_cfg, key)) is not None:
            try:
                setattr(cfg_out, key, value)
            except AttributeError:
                LOG.error(f"Could not set {key}!")
    cfg_out.save_pretrained(out_path)


class TokenMarker(enum.Enum):
    SPECIAL = "special"
    WORD_START = "word_start"


NormalizedToken: TypeAlias = Union[str, Tuple[TokenMarker, str]]


def normalize_token(
    token: str,
    special_tokens_map: Dict[str, Union[str, List[str]]],
    word_start_prefix: str = "▁",
) -> NormalizedToken:
    """
    Normalize a token for comparison.
    """
    if token.startswith(word_start_prefix):
        return (TokenMarker.WORD_START, token[len(word_start_prefix) :])

    for special_token_type, values in special_tokens_map.items():
        if isinstance(values, str):
            values = [values]
        if token in values:
            return (TokenMarker.SPECIAL, special_token_type)
    return token


def token_prefixes(
    token: NormalizedToken, allow_whitespace: bool = False
) -> Generator[NormalizedToken, None, None]:
    """Yield potential prefixes of a token."""
    marker = None
    if isinstance(token, tuple):
        marker, token = token

    for i in range(len(token) - 1, 0, -1):
        prefix = token[:i]
        if not allow_whitespace and not prefix.strip():
            break
        if marker is not None:
            yield (marker, prefix)
        else:
            yield prefix


def get_embedding_info(
    model: ModelReference, options: MergeOptions
) -> Tuple[WeightInfo, WeightInfo]:
    """Get WeightInfo for the input and output embeddings of a model."""
    cfg = model.config(trust_remote_code=options.trust_remote_code)
    arch_info = get_architecture_info(cfg)

    embed, lm_head = None, None
    for weight_info in arch_info.pre_weights(cfg):
        if weight_info.is_embed:
            if embed is not None:
                raise RuntimeError("Multiple input embeddings found")
            embed = weight_info

    for weight_info in arch_info.post_weights(cfg):
        if weight_info.is_embed:
            if lm_head is not None:
                raise RuntimeError("Multiple output embeddings found")
            lm_head = weight_info

    return embed, lm_head


def report_issue(message: str, error: bool = False):
    """Log an issue and exit if error is True."""
    if error:
        LOG.error(message)
        sys.exit(1)
    else:
        LOG.warning(message)


def get_embeddings(
    original_embed: torch.Tensor,
    donor_embed: torch.Tensor,
    original_vocab: Dict[NormalizedToken, int],
    donor_vocab: Dict[NormalizedToken, int],
    common_tokens: List[str],
    *,
    accept_prefix: bool = False,
    k: int = 8,
    barycentric: bool = False,
    cosine_similarity: bool = False,
    log_reconstruction_error: bool = True,
    log_statistics: bool = True,
    name: Optional[str] = None,
) -> torch.Tensor:
    """
    Generate embeddings for a target vocabulary.

    For tokens present in both vocabularies, the embedding from original_embed is
    directly copied. For tokens not present in the original vocabulary, the
    embedding is approximated using the k-nearest neighbours among the tokens that
    are present in both vocabularies. This can be done using either barycentric
    interpolation or distance weighted averaging.

    Args:
        original_embed (torch.Tensor): Embedding matrix for the original vocabulary.
        donor_embed (torch.Tensor): Embedding matrix for the new vocabulary.
        original_vocab (Dict[NormalizedToken, int]): Maps tokens to indices in
            original_embed.
        donor_vocab (Dict[NormalizedToken, int]): Maps tokens to indices in
            donor_embed.
        common_tokens (List[str]): Tokens that are common to both vocabularies.
        accept_prefix (bool): If True, allows using prefix matches for tokens when
            an exact match is not found.
        k (int): Number of nearest neighbours to use for embedding interpolation.
        barycentric (bool): If True, uses barycentric interpolation for embedding
            approximation. Otherwise, uses distance weighting.
        cosine_similarity (bool): If True, uses cosine similarity to find nearest
            neighbors. Otherwise, uses Euclidean distance.
        log_reconstruction_error (bool): If True, logs the mean squared error of
            the reconstructed embeddings.
        log_statistics (bool): If True, logs statistics about the embedding
            approximation process.
        name (Optional[str]): Name of the embedding matrix. Used for logging.

    Returns:
        torch.Tensor: Embedding matrix for the new vocabulary.
            Shape is (len(donor_vocab), original_embed.shape[1]).
    """
    hidden_size_0 = original_embed.shape[1]
    hidden_size_1 = donor_embed.shape[1]

    e_c_0 = torch.empty(
        len(common_tokens),
        hidden_size_0,
        device=original_embed.device,
        dtype=original_embed.dtype,
    )
    e_c_1 = torch.empty(
        len(common_tokens),
        hidden_size_1,
        device=donor_embed.device,
        dtype=donor_embed.dtype,
    )
    for i, token in enumerate(common_tokens):
        idx_0 = original_vocab[token]
        idx_1 = donor_vocab[token]
        e_c_0[i] = original_embed[idx_0]
        e_c_1[i] = donor_embed[idx_1]

    exact_matches = 0
    prefix_matches = 0
    knn_matches = 0
    res = torch.zeros(
        max(donor_vocab.values()) + 1,
        hidden_size_0,
        device=original_embed.device,
        dtype=original_embed.dtype,
    )

    # message for tqdm
    desc = "Computing embeddings"
    if name:
        desc += f" ({name})"

    knn_reconstruction_error = []
    for token in tqdm.tqdm(donor_vocab, desc=desc):
        idx_1 = donor_vocab[token]
        if token in original_vocab:
            res[idx_1] = original_embed[original_vocab[token]]
            exact_matches += 1
            continue

        if isinstance(token, str):
            if len(token) == 1 and ord(token) < 256:
                # check for matching byte tokens
                byte_tok = f"<0x{ord(token):02X}>"
                if byte_tok in original_vocab:
                    res[idx_1] = original_embed[original_vocab[byte_tok]]
                    exact_matches += 1
                    continue
            elif token.startswith("<0x") and token.endswith(">") and len(token) == 6:
                # check for character tokens matching byte tokens
                try:
                    byte = int(token[3:-1], 16)
                except ValueError:
                    pass
                else:
                    if chr(byte) in original_vocab:
                        res[idx_1] = original_embed[original_vocab[chr(byte)]]
                        exact_matches += 1
                        continue

        if accept_prefix:
            # For the LM head, we can accept prefix matches so long as the prefix is
            # not also in the new vocab - this is to avoid including the same embedding
            # vector multiple times
            found_prefix = False
            for prefix in token_prefixes(token, allow_whitespace=False):
                if prefix in original_vocab and prefix not in donor_vocab:
                    res[idx_1] = original_embed[original_vocab[prefix]]
                    found_prefix = True
                    break

            if found_prefix:
                prefix_matches += 1
                continue

        # If we can't find a prefix match, approximate from k nearest neighbours
        token_embedding = donor_embed[idx_1]
        if cosine_similarity:
            cos_similarities = torch.nn.functional.cosine_similarity(
                token_embedding.unsqueeze(0), e_c_1, dim=1
            )
            distances = 1 - cos_similarities
        else:
            # euclidean distance
            distances = torch.cdist(token_embedding.unsqueeze(0), e_c_1).squeeze()
        _, indices = torch.topk(distances, k, largest=False)
        knn_embeddings = e_c_1[indices]

        if barycentric:
            # Find least squares barycentric weights
            # Constrain sum of weights to 1 by adding a row of 1s
            constraint_row = torch.ones(
                (1, knn_embeddings.shape[0]), device=original_embed.device
            )
            knn_e_c = torch.cat([knn_embeddings.T, constraint_row], dim=0)
            e_c = torch.cat(
                [
                    token_embedding,
                    torch.tensor([1.0], device=e_c_0.device, dtype=e_c_0.dtype),
                ]
            ).unsqueeze(-1)
            weights = torch.linalg.lstsq(
                knn_e_c.float(), e_c.float(), rcond=1e-6
            ).solution.to(dtype=e_c_0.dtype)
        else:
            # Just weight by distance
            if cosine_similarity:
                weights = cos_similarities[indices].unsqueeze(-1).to(dtype=e_c_0.dtype)
            else:
                # weights = 1 / distances[indices].to(dtype=e_c_0.dtype).clamp(min=1e-6)
                weights = torch.nn.functional.softmin(
                    distances[indices].to(dtype=e_c_0.dtype), dim=0
                )
            weights /= weights.sum()

        if log_reconstruction_error:
            # compute reconstruction error in donor_embed space
            knn_reconstruction_error.append(
                torch.nn.functional.mse_loss(
                    (knn_embeddings.T.to(weights.dtype) @ weights).squeeze(),
                    token_embedding,
                ).item()
            )

        # Reconstruct the embedding in original_embed space
        res[idx_1] = (e_c_0[indices].T @ weights).squeeze()
        knn_matches += 1

    if log_statistics:
        LOG.info("Token breakdown:")
        LOG.info(f"\tExact matches: {exact_matches}")
        if prefix_matches:
            LOG.info(f"\tPrefix matches: {prefix_matches}")
        LOG.info(f"\tKNN solutions: {knn_matches}")

        pct_approx = int((len(donor_vocab) - exact_matches) * 100 / len(donor_vocab))
        if pct_approx > 10:
            # encourage best practices
            LOG.warning(
                f"Large number of tokens ({pct_approx}%) could not be exactly "
                "matched - be sure to fine tune this sucker!"
            )

    if knn_reconstruction_error:
        knn_err = torch.tensor(
            knn_reconstruction_error, device=original_embed.device, dtype=torch.float32
        )
        LOG.info("KNN reconstruction error:")
        LOG.info(f"\tMean: {knn_err.mean().item()}")
        LOG.debug(f"\tMedian: {knn_err.median().item()}")
        LOG.debug(f"\tMax: {knn_err.max().item()}")
        LOG.debug(f"\tMin: {knn_err.min().item()}")
        LOG.debug(f"\tStddev: {knn_err.std().item()}")
        if knn_err.mean().isnan() or knn_err.mean().isinf():
            LOG.error(
                "NaN or infinite reconstruction error detected - output is "
                "definitely broken!"
            )
        if knn_err.mean().item() >= 0.01:
            LOG.warning("Unreasonably high reconstruction error - expect some issues!")

    return res


def load_tokenizer(
    model: ModelReference, options: MergeOptions
) -> Tuple[transformers.PreTrainedTokenizerBase, Dict[NormalizedToken, int]]:
    """Load a tokenizer from a model. Returns the tokenizer and a mapping of
    normalized tokens to indices."""
    tokenizer = transformers.AutoTokenizer.from_pretrained(
        model.model.path,
        revision=model.model.revision,
        trust_remote_code=options.trust_remote_code,
    )

    gpt2_style = [
        transformers.GPT2Tokenizer,
        transformers.GPT2TokenizerFast,
        transformers.OpenAIGPTTokenizer,
        transformers.OpenAIGPTTokenizerFast,
    ]
    for candidate in ["Qwen2Tokenizer", "Qwen2TokenizerFast"]:
        if hasattr(transformers, candidate):
            gpt2_style.append(getattr(transformers, candidate))

    sp_style = [
        transformers.LlamaTokenizer,
        transformers.LlamaTokenizerFast,
        transformers.T5Tokenizer,
        transformers.T5TokenizerFast,
    ]
    for candidate in ["GemmaTokenizer", "GemmaTokenizerFast"]:
        if hasattr(transformers, candidate):
            sp_style.append(getattr(transformers, candidate))

    vocab = tokenizer.get_vocab()
    if isinstance(
        tokenizer,
        tuple(gpt2_style),
    ):
        word_start_prefix = "Ġ"
    elif isinstance(
        tokenizer,
        tuple(sp_style),
    ):
        if "Ġhello" in vocab:
            # dumb special case for deepseek's tokenizer
            word_start_prefix = "Ġ"
        else:
            word_start_prefix = "▁"
    else:
        LOG.warning("Unknown tokenizer type - assuming 'Ġ' word start prefix")
        word_start_prefix = "Ġ"

    tokenizer.all_special_tokens
    return tokenizer, {
        normalize_token(
            token,
            special_tokens_map=tokenizer.special_tokens_map,
            word_start_prefix=word_start_prefix,
        ): i
        for token, i in vocab.items()
    }


def validate_architecture(
    model: ModelReference, donor: ModelReference, options: MergeOptions
) -> Tuple[ConfiguredArchitectureInfo, transformers.PretrainedConfig]:
    """
    Validate that the architectures of two models match.

    Returns the architecture info for the model and the config for the donor.
    """
    model_cfg = model.config(trust_remote_code=options.trust_remote_code)
    donor_cfg = donor.config(trust_remote_code=options.trust_remote_code)
    model_arch_info = get_architecture_info(model_cfg)
    donor_arch_info = get_architecture_info(donor_cfg)
    if donor_arch_info != model_arch_info:
        report_issue(
            f"Model architectures do not match: {model_arch_info.name()} vs {donor_arch_info.name()}",
            error=not options.allow_crimes,
        )

    return ConfiguredArchitectureInfo(info=model_arch_info, config=model_cfg), donor_cfg


if __name__ == "__main__":
    with torch.no_grad():
        main()