File size: 6,171 Bytes
a164e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import json
import os
import tempfile
from typing import List, Optional, Union

import pytest
import tokenizers
from common import make_picollama, run_and_check_merge
from transformers import LlamaTokenizerFast, PreTrainedTokenizerBase

from mergekit.config import InputModelDefinition, MergeConfiguration, ParameterSetting


@pytest.fixture(scope="session")
def model_base(tmp_path_factory):
    model_path = make_picollama(tmp_path_factory.mktemp("model_base"), vocab_size=64)
    make_tokenizer(vocab_size=64, added_tokens=[]).save_pretrained(model_path)
    return model_path


@pytest.fixture(scope="session")
def model_chatml(tmp_path_factory):
    model_path = make_picollama(tmp_path_factory.mktemp("model_chatml"), vocab_size=66)
    make_tokenizer(
        vocab_size=64, added_tokens=["<|im_start|>", "<|im_end|>"]
    ).save_pretrained(model_path)
    return model_path


@pytest.fixture(scope="session")
def model_padded(tmp_path_factory):
    model_path = make_picollama(tmp_path_factory.mktemp("model_padded"), vocab_size=64)
    make_tokenizer(
        vocab_size=64,
        added_tokens=["<UNUSED_0>", "<UNUSED_1>", "<UNUSED_2>", "<UNUSED_3>"],
    ).save_pretrained(model_path)
    return model_path


def make_tokenizer(
    vocab_size: int, added_tokens: List[Union[str, tokenizers.AddedToken]]
) -> PreTrainedTokenizerBase:
    tokens = ["<unk>", "<s>", "</s>"] + [f"_tok_{idx}" for idx in range(3, vocab_size)]
    tokens = tokens[:vocab_size]
    tok_data = {
        "version": "1.0",
        "model": {
            "type": "BPE",
            "vocab": dict(zip(tokens, range(vocab_size))),
            "merges": [],
        },
        "added_tokens": [],
    }
    tok = tokenizers.Tokenizer.from_str(json.dumps(tok_data))
    with tempfile.TemporaryDirectory() as p:
        tok_path = os.path.join(p, "tokenizer.json")
        tok.save(tok_path)
        res = LlamaTokenizerFast(tokenizer_file=tok_path)

    res.add_tokens(added_tokens)
    return res


def check_tokenizer(
    expected_size: int,
    expected_added_ct: Optional[int] = None,
    must_contain: Optional[List[str]] = None,
    must_not_contain: Optional[List[str]] = None,
):
    def _cb(model_path: str):
        tok: LlamaTokenizerFast = LlamaTokenizerFast.from_pretrained(model_path)
        vocab = tok.get_vocab()
        print(vocab)
        assert len(vocab) == expected_size

        if expected_added_ct is not None:
            assert len(tok.added_tokens_decoder) == expected_added_ct

        if must_contain:
            for tok in must_contain:
                assert tok in vocab

        if must_not_contain:
            for tok in must_not_contain:
                assert tok not in vocab

    return _cb


class TestTokenizerMerges:
    def test_legacy_mode(self, model_base: str, model_padded: str, model_chatml: str):
        config = self.make_config(
            [model_base, model_padded, model_chatml], base_model=model_base
        )
        # when no tokenizer_source is set, expect output tokenizer to be from base_model
        run_and_check_merge(
            config, validate=check_tokenizer(expected_size=64, expected_added_ct=3)
        )

    def test_source_base(self, model_base: str, model_padded: str, model_chatml: str):
        config = self.make_config(
            [model_base, model_padded, model_chatml],
            base_model=model_base,
            tokenizer_source="base",
        )
        # expect the same output but it's a different code path
        run_and_check_merge(
            config, validate=check_tokenizer(expected_size=64, expected_added_ct=3)
        )

    def test_source_union(self, model_base: str, model_padded: str, model_chatml: str):
        config = self.make_config(
            [model_base, model_padded, model_chatml],
            base_model=model_base,
            tokenizer_source="union",
        )

        # output should have all tokens used by any model
        # but not include any unused tokens
        run_and_check_merge(
            config,
            validate=check_tokenizer(
                expected_size=66,
                expected_added_ct=5,
                must_contain=["<|im_start|>", "<|im_end|>"],
                must_not_contain=[f"<UNUSED_{idx}>" for idx in range(4)],
            ),
        )

    def test_source_model(self, model_base: str, model_padded: str, model_chatml: str):
        config = self.make_config(
            [model_base, model_padded, model_chatml],
            base_model=model_base,
            tokenizer_source="model:" + model_chatml,
        )
        # tokenizer should match model_chatml
        run_and_check_merge(
            config,
            validate=check_tokenizer(
                expected_size=66, must_contain=["<|im_start|>", "<|im_end|>"]
            ),
        )

    def test_slerp_union(self, model_base: str, model_chatml: str):
        config = self.make_config(
            [model_base, model_chatml],
            base_model=model_base,
            tokenizer_source="union",
            merge_method="slerp",
            embed_slerp=True,
            t="0.5",
        )

        run_and_check_merge(
            config,
            validate=check_tokenizer(
                expected_size=66,
                must_contain=["<|im_start|>", "<|im_end|>"],
            ),
        )

    def make_config(
        self,
        models: List[str],
        base_model: Optional[str] = None,
        merge_method: str = "linear",
        tokenizer_source: Optional[str] = None,
        embed_slerp: bool = False,
        t: Optional[ParameterSetting] = None,
    ):
        parameters = {"embed_slerp": embed_slerp}
        if t is not None:
            parameters["t"] = t

        config = MergeConfiguration(
            merge_method=merge_method,
            base_model=base_model,
            models=[
                InputModelDefinition(
                    model=m,
                    parameters={"weight": 1.0},
                )
                for m in models
            ],
            dtype="bfloat16",
            tokenizer_source=tokenizer_source,
            parameters=parameters,
        )
        return config