|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from enum import Enum |
|
|
|
import torch |
|
|
|
|
|
class SparsificationMethod(str, Enum): |
|
magnitude = "magnitude" |
|
random = "random" |
|
rescaled_random = "rescaled_random" |
|
|
|
|
|
def magnitude(tensor: torch.Tensor, density: float) -> torch.Tensor: |
|
"""Masks out the smallest values, retaining a proportion of `density`.""" |
|
if density >= 1: |
|
return tensor |
|
|
|
k = int(density * tensor.view(-1).shape[0]) |
|
|
|
assert k > 0, "not gonna zero out the whole tensor buddy" |
|
mask = torch.zeros_like(tensor) |
|
w = tensor.abs().view(-1) |
|
if w.device.type == "cpu": |
|
w = w.float() |
|
topk = torch.topk(w, k=k, largest=True) |
|
mask.view(-1)[topk.indices] = 1 |
|
|
|
return tensor * mask |
|
|
|
|
|
def bernoulli( |
|
tensor: torch.Tensor, density: float, rescale: bool = True |
|
) -> torch.Tensor: |
|
if density >= 1: |
|
return tensor |
|
|
|
if (tensor.device.type != "cpu") or tensor.dtype == torch.bfloat16: |
|
work_dtype = tensor.dtype |
|
else: |
|
|
|
work_dtype = torch.float32 |
|
|
|
mask = torch.bernoulli( |
|
torch.full_like(input=tensor, fill_value=density, dtype=work_dtype) |
|
) |
|
res = tensor.to(work_dtype) * mask |
|
if rescale: |
|
res /= density |
|
return res.to(tensor.dtype) |
|
|
|
|
|
def sparsify( |
|
tensor: torch.Tensor, density: float, method: SparsificationMethod |
|
) -> torch.Tensor: |
|
if method == SparsificationMethod.magnitude: |
|
return magnitude(tensor, density=density) |
|
elif method == SparsificationMethod.random: |
|
return bernoulli(tensor, density=density, rescale=False) |
|
elif method == SparsificationMethod.rescaled_random: |
|
return bernoulli(tensor, density=density, rescale=True) |
|
else: |
|
raise NotImplementedError(method) |
|
|