# Copyright (C) 2024 Charles O. Goddard # # This software is free software: you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This software is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see http://www.gnu.org/licenses/. import enum import logging import sys from typing import Dict, Generator, List, Optional, Tuple, Union import click import torch import tqdm import transformers from typing_extensions import TypeAlias from mergekit.architecture import ( ConfiguredArchitectureInfo, WeightInfo, get_architecture_info, ) from mergekit.common import ModelReference from mergekit.io import TensorWriter from mergekit.io.tasks import LoaderCache from mergekit.options import MergeOptions, add_merge_options LOG = logging.getLogger(__name__) @click.command("mergekit-tokensurgeon") @click.argument("model", type=str) @click.argument("donor", type=str) @click.argument("out_path", type=str) @click.option( "-v", "verbosity", count=True, help="Verbose logging", default=0, show_default=False ) @click.option( "-k", type=int, default=8, help="Number of nearest neighbours to use for embedding interpolation", ) @click.option( "--barycentric/--no-barycentric", "-b/-nb", is_flag=True, default=False, help="Use barycentric interpolation instead of distance weighting", ) @click.option( "--cosine-similarity/--no-cosine-similarity", "-c/-nc", is_flag=True, default=False, help="Use cosine similarity for nearest neighbour search", ) @add_merge_options def main( model: str, donor: str, out_path: str, verbosity: int, k: int, barycentric: bool, cosine_similarity: bool, merge_options: MergeOptions, ): """ Replace the tokenizer of a model with that of a donor model. Attempts to approximate embeddings for tokens that are in the donor model but not the original model. This greatly reduces the amount of training required to settle in the new embeddings, and potentially removes the need for fine-tuning entirely for tokenizers that are sufficiently similar. The model and donor model must have the same architecture. """ log_level = logging.WARNING if verbosity == 1: log_level = logging.INFO elif verbosity > 1: log_level = logging.DEBUG logging.basicConfig(level=log_level) LOG.warning("This tool is experimental and may produce unexpected results.") model = ModelReference.model_validate(model) donor = ModelReference.model_validate(donor) cache = LoaderCache() cache.setup(options=merge_options) device = "cuda" if merge_options.cuda else "cpu" arch_info, donor_cfg = validate_architecture(model, donor, merge_options) embed_info, lm_head_info = get_embedding_info(model, merge_options) donor_embed_info, donor_lm_head_info = get_embedding_info(donor, merge_options) _, old_vocab = load_tokenizer(model, merge_options) tokenizer, new_vocab = load_tokenizer(donor, merge_options) common_tokens = list(set(old_vocab.keys()) & set(new_vocab.keys())) old_embed = cache.get(model).get_tensor( embed_info.name, aliases=embed_info.aliases, device=device ) donor_embed = cache.get(donor).get_tensor( donor_embed_info.name, aliases=donor_embed_info.aliases, device=device ) (_, hidden_size_0) = old_embed.shape (_, hidden_size_1) = donor_embed.shape if hidden_size_1 != hidden_size_0: report_issue( f"Embedding sizes do not match: {hidden_size_0} vs {hidden_size_1}", error=not merge_options.allow_crimes, ) min_overlap = max(hidden_size_0, hidden_size_1) if len(common_tokens) < min_overlap: report_issue( f"Common tokens ({len(common_tokens)}) less than embedding size ({min_overlap})", error=not merge_options.allow_crimes, ) LOG.info("Computing new embeddings") new_embed = get_embeddings( old_embed, donor_embed, old_vocab, new_vocab, common_tokens, accept_prefix=False, k=k, barycentric=barycentric, cosine_similarity=cosine_similarity, name=embed_info.name, ) if lm_head_info: old_lm_head = cache.get(model).get_tensor( lm_head_info.name, aliases=lm_head_info.aliases, device=device ) donor_lm_head = cache.get(donor).get_tensor( donor_lm_head_info.name, aliases=donor_lm_head_info.aliases, device=device ) LOG.info("Computing new lm_head embeddings") new_lm_head = get_embeddings( old_lm_head, donor_lm_head, old_vocab, new_vocab, common_tokens, accept_prefix=True, k=k, barycentric=barycentric, cosine_similarity=cosine_similarity, name=lm_head_info.name, ) # Save out the new model LOG.info(f"Saving new model to {out_path}") writer = TensorWriter( out_path, max_shard_size=merge_options.out_shard_size, safe_serialization=merge_options.safe_serialization, ) for weight_info in tqdm.tqdm(arch_info.all_weights(), desc="Saving weights"): if weight_info.name == embed_info.name: tensor = new_embed elif lm_head_info is not None and weight_info.name == lm_head_info.name: tensor = new_lm_head else: tensor = cache.get(model).get_tensor( weight_info.name, aliases=weight_info.aliases ) writer.save_tensor(weight_info.name, tensor, clone=merge_options.clone_tensors) writer.finalize() tokenizer.save_pretrained(out_path) cfg_out = arch_info.config try: cfg_out.vocab_size = tokenizer.vocab_size except AttributeError: LOG.error( "Could not set vocab size in config.json - you may need to update it manually." ) for key in [ "pad_token_id", "eos_token_id", "bos_token_id", "unk_token_id", "mask_token_id", "padding_side", ]: if hasattr(donor_cfg, key) and (value := getattr(donor_cfg, key)) is not None: try: setattr(cfg_out, key, value) except AttributeError: LOG.error(f"Could not set {key}!") cfg_out.save_pretrained(out_path) class TokenMarker(enum.Enum): SPECIAL = "special" WORD_START = "word_start" NormalizedToken: TypeAlias = Union[str, Tuple[TokenMarker, str]] def normalize_token( token: str, special_tokens_map: Dict[str, Union[str, List[str]]], word_start_prefix: str = "▁", ) -> NormalizedToken: """ Normalize a token for comparison. """ if token.startswith(word_start_prefix): return (TokenMarker.WORD_START, token[len(word_start_prefix) :]) for special_token_type, values in special_tokens_map.items(): if isinstance(values, str): values = [values] if token in values: return (TokenMarker.SPECIAL, special_token_type) return token def token_prefixes( token: NormalizedToken, allow_whitespace: bool = False ) -> Generator[NormalizedToken, None, None]: """Yield potential prefixes of a token.""" marker = None if isinstance(token, tuple): marker, token = token for i in range(len(token) - 1, 0, -1): prefix = token[:i] if not allow_whitespace and not prefix.strip(): break if marker is not None: yield (marker, prefix) else: yield prefix def get_embedding_info( model: ModelReference, options: MergeOptions ) -> Tuple[WeightInfo, WeightInfo]: """Get WeightInfo for the input and output embeddings of a model.""" cfg = model.config(trust_remote_code=options.trust_remote_code) arch_info = get_architecture_info(cfg) embed, lm_head = None, None for weight_info in arch_info.pre_weights(cfg): if weight_info.is_embed: if embed is not None: raise RuntimeError("Multiple input embeddings found") embed = weight_info for weight_info in arch_info.post_weights(cfg): if weight_info.is_embed: if lm_head is not None: raise RuntimeError("Multiple output embeddings found") lm_head = weight_info return embed, lm_head def report_issue(message: str, error: bool = False): """Log an issue and exit if error is True.""" if error: LOG.error(message) sys.exit(1) else: LOG.warning(message) def get_embeddings( original_embed: torch.Tensor, donor_embed: torch.Tensor, original_vocab: Dict[NormalizedToken, int], donor_vocab: Dict[NormalizedToken, int], common_tokens: List[str], *, accept_prefix: bool = False, k: int = 8, barycentric: bool = False, cosine_similarity: bool = False, log_reconstruction_error: bool = True, log_statistics: bool = True, name: Optional[str] = None, ) -> torch.Tensor: """ Generate embeddings for a target vocabulary. For tokens present in both vocabularies, the embedding from original_embed is directly copied. For tokens not present in the original vocabulary, the embedding is approximated using the k-nearest neighbours among the tokens that are present in both vocabularies. This can be done using either barycentric interpolation or distance weighted averaging. Args: original_embed (torch.Tensor): Embedding matrix for the original vocabulary. donor_embed (torch.Tensor): Embedding matrix for the new vocabulary. original_vocab (Dict[NormalizedToken, int]): Maps tokens to indices in original_embed. donor_vocab (Dict[NormalizedToken, int]): Maps tokens to indices in donor_embed. common_tokens (List[str]): Tokens that are common to both vocabularies. accept_prefix (bool): If True, allows using prefix matches for tokens when an exact match is not found. k (int): Number of nearest neighbours to use for embedding interpolation. barycentric (bool): If True, uses barycentric interpolation for embedding approximation. Otherwise, uses distance weighting. cosine_similarity (bool): If True, uses cosine similarity to find nearest neighbors. Otherwise, uses Euclidean distance. log_reconstruction_error (bool): If True, logs the mean squared error of the reconstructed embeddings. log_statistics (bool): If True, logs statistics about the embedding approximation process. name (Optional[str]): Name of the embedding matrix. Used for logging. Returns: torch.Tensor: Embedding matrix for the new vocabulary. Shape is (len(donor_vocab), original_embed.shape[1]). """ hidden_size_0 = original_embed.shape[1] hidden_size_1 = donor_embed.shape[1] e_c_0 = torch.empty( len(common_tokens), hidden_size_0, device=original_embed.device, dtype=original_embed.dtype, ) e_c_1 = torch.empty( len(common_tokens), hidden_size_1, device=donor_embed.device, dtype=donor_embed.dtype, ) for i, token in enumerate(common_tokens): idx_0 = original_vocab[token] idx_1 = donor_vocab[token] e_c_0[i] = original_embed[idx_0] e_c_1[i] = donor_embed[idx_1] exact_matches = 0 prefix_matches = 0 knn_matches = 0 res = torch.zeros( max(donor_vocab.values()) + 1, hidden_size_0, device=original_embed.device, dtype=original_embed.dtype, ) # message for tqdm desc = "Computing embeddings" if name: desc += f" ({name})" knn_reconstruction_error = [] for token in tqdm.tqdm(donor_vocab, desc=desc): idx_1 = donor_vocab[token] if token in original_vocab: res[idx_1] = original_embed[original_vocab[token]] exact_matches += 1 continue if isinstance(token, str): if len(token) == 1 and ord(token) < 256: # check for matching byte tokens byte_tok = f"<0x{ord(token):02X}>" if byte_tok in original_vocab: res[idx_1] = original_embed[original_vocab[byte_tok]] exact_matches += 1 continue elif token.startswith("<0x") and token.endswith(">") and len(token) == 6: # check for character tokens matching byte tokens try: byte = int(token[3:-1], 16) except ValueError: pass else: if chr(byte) in original_vocab: res[idx_1] = original_embed[original_vocab[chr(byte)]] exact_matches += 1 continue if accept_prefix: # For the LM head, we can accept prefix matches so long as the prefix is # not also in the new vocab - this is to avoid including the same embedding # vector multiple times found_prefix = False for prefix in token_prefixes(token, allow_whitespace=False): if prefix in original_vocab and prefix not in donor_vocab: res[idx_1] = original_embed[original_vocab[prefix]] found_prefix = True break if found_prefix: prefix_matches += 1 continue # If we can't find a prefix match, approximate from k nearest neighbours token_embedding = donor_embed[idx_1] if cosine_similarity: cos_similarities = torch.nn.functional.cosine_similarity( token_embedding.unsqueeze(0), e_c_1, dim=1 ) distances = 1 - cos_similarities else: # euclidean distance distances = torch.cdist(token_embedding.unsqueeze(0), e_c_1).squeeze() _, indices = torch.topk(distances, k, largest=False) knn_embeddings = e_c_1[indices] if barycentric: # Find least squares barycentric weights # Constrain sum of weights to 1 by adding a row of 1s constraint_row = torch.ones( (1, knn_embeddings.shape[0]), device=original_embed.device ) knn_e_c = torch.cat([knn_embeddings.T, constraint_row], dim=0) e_c = torch.cat( [ token_embedding, torch.tensor([1.0], device=e_c_0.device, dtype=e_c_0.dtype), ] ).unsqueeze(-1) weights = torch.linalg.lstsq( knn_e_c.float(), e_c.float(), rcond=1e-6 ).solution.to(dtype=e_c_0.dtype) else: # Just weight by distance if cosine_similarity: weights = cos_similarities[indices].unsqueeze(-1).to(dtype=e_c_0.dtype) else: # weights = 1 / distances[indices].to(dtype=e_c_0.dtype).clamp(min=1e-6) weights = torch.nn.functional.softmin( distances[indices].to(dtype=e_c_0.dtype), dim=0 ) weights /= weights.sum() if log_reconstruction_error: # compute reconstruction error in donor_embed space knn_reconstruction_error.append( torch.nn.functional.mse_loss( (knn_embeddings.T.to(weights.dtype) @ weights).squeeze(), token_embedding, ).item() ) # Reconstruct the embedding in original_embed space res[idx_1] = (e_c_0[indices].T @ weights).squeeze() knn_matches += 1 if log_statistics: LOG.info("Token breakdown:") LOG.info(f"\tExact matches: {exact_matches}") if prefix_matches: LOG.info(f"\tPrefix matches: {prefix_matches}") LOG.info(f"\tKNN solutions: {knn_matches}") pct_approx = int((len(donor_vocab) - exact_matches) * 100 / len(donor_vocab)) if pct_approx > 10: # encourage best practices LOG.warning( f"Large number of tokens ({pct_approx}%) could not be exactly " "matched - be sure to fine tune this sucker!" ) if knn_reconstruction_error: knn_err = torch.tensor( knn_reconstruction_error, device=original_embed.device, dtype=torch.float32 ) LOG.info("KNN reconstruction error:") LOG.info(f"\tMean: {knn_err.mean().item()}") LOG.debug(f"\tMedian: {knn_err.median().item()}") LOG.debug(f"\tMax: {knn_err.max().item()}") LOG.debug(f"\tMin: {knn_err.min().item()}") LOG.debug(f"\tStddev: {knn_err.std().item()}") if knn_err.mean().isnan() or knn_err.mean().isinf(): LOG.error( "NaN or infinite reconstruction error detected - output is " "definitely broken!" ) if knn_err.mean().item() >= 0.01: LOG.warning("Unreasonably high reconstruction error - expect some issues!") return res def load_tokenizer( model: ModelReference, options: MergeOptions ) -> Tuple[transformers.PreTrainedTokenizerBase, Dict[NormalizedToken, int]]: """Load a tokenizer from a model. Returns the tokenizer and a mapping of normalized tokens to indices.""" tokenizer = transformers.AutoTokenizer.from_pretrained( model.model.path, revision=model.model.revision, trust_remote_code=options.trust_remote_code, ) gpt2_style = [ transformers.GPT2Tokenizer, transformers.GPT2TokenizerFast, transformers.OpenAIGPTTokenizer, transformers.OpenAIGPTTokenizerFast, ] for candidate in ["Qwen2Tokenizer", "Qwen2TokenizerFast"]: if hasattr(transformers, candidate): gpt2_style.append(getattr(transformers, candidate)) sp_style = [ transformers.LlamaTokenizer, transformers.LlamaTokenizerFast, transformers.T5Tokenizer, transformers.T5TokenizerFast, ] for candidate in ["GemmaTokenizer", "GemmaTokenizerFast"]: if hasattr(transformers, candidate): sp_style.append(getattr(transformers, candidate)) vocab = tokenizer.get_vocab() if isinstance( tokenizer, tuple(gpt2_style), ): word_start_prefix = "Ġ" elif isinstance( tokenizer, tuple(sp_style), ): if "Ġhello" in vocab: # dumb special case for deepseek's tokenizer word_start_prefix = "Ġ" else: word_start_prefix = "▁" else: LOG.warning("Unknown tokenizer type - assuming 'Ġ' word start prefix") word_start_prefix = "Ġ" tokenizer.all_special_tokens return tokenizer, { normalize_token( token, special_tokens_map=tokenizer.special_tokens_map, word_start_prefix=word_start_prefix, ): i for token, i in vocab.items() } def validate_architecture( model: ModelReference, donor: ModelReference, options: MergeOptions ) -> Tuple[ConfiguredArchitectureInfo, transformers.PretrainedConfig]: """ Validate that the architectures of two models match. Returns the architecture info for the model and the config for the donor. """ model_cfg = model.config(trust_remote_code=options.trust_remote_code) donor_cfg = donor.config(trust_remote_code=options.trust_remote_code) model_arch_info = get_architecture_info(model_cfg) donor_arch_info = get_architecture_info(donor_cfg) if donor_arch_info != model_arch_info: report_issue( f"Model architectures do not match: {model_arch_info.name()} vs {donor_arch_info.name()}", error=not options.allow_crimes, ) return ConfiguredArchitectureInfo(info=model_arch_info, config=model_cfg), donor_cfg if __name__ == "__main__": with torch.no_grad(): main()