Shankhdhar commited on
Commit
9fe73d3
·
verified ·
1 Parent(s): 6588c4d

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: What is the process for exchanging sneakers?
13
+ - text: Can I track the delivery status of my order using the store's customer service
14
+ hotline?
15
+ - text: What are the latest choker styles available for a wedding occasion?
16
+ - text: I'm interested in pendants that can be engraved. Do you provide such services?
17
+ - text: Do you offer weekend or holiday deliveries for orders?
18
+ pipeline_tag: text-classification
19
+ inference: true
20
+ model-index:
21
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
22
+ results:
23
+ - task:
24
+ type: text-classification
25
+ name: Text Classification
26
+ dataset:
27
+ name: Unknown
28
+ type: unknown
29
+ split: test
30
+ metrics:
31
+ - type: accuracy
32
+ value: 0.9276729559748428
33
+ name: Accuracy
34
+ ---
35
+
36
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
37
+
38
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
39
+
40
+ The model has been trained using an efficient few-shot learning technique that involves:
41
+
42
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
43
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** SetFit
49
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
50
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
51
+ - **Maximum Sequence Length:** 512 tokens
52
+ - **Number of Classes:** 6 classes
53
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
60
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
61
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
62
+
63
+ ### Model Labels
64
+ | Label | Examples |
65
+ |:------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
66
+ | complaints | <ul><li>"I recently purchased the Teddy's Heartbeat Gold Pendant and I'm disappointed to see that the pendant scratches very easily. Is there anything that can be done about this?"</li><li>'I recently purchased the Pearly Round Earrings, but upon arrival, I noticed that the pearls are scratched and lack luster. This is not what I expected based on the product images online.'</li><li>'The Pearl Grace Ring I received has lost its shine within a week of purchase, which is disappointing. What can be done about this?'</li></ul> |
67
+ | product discoverability | <ul><li>'Customized bakery boxes for specific needs'</li><li>'Suggest me some casual sneakers for women'</li><li>'Do you have Converse sneakers in different colors?'</li></ul> |
68
+ | order tracking | <ul><li>"I'm concerned about the delay in the delivery of my order. Can you update me on the status?"</li><li>'I need to confirm the dispatch date for my recent purchase. Can you help me with that?'</li><li>'I want to know the status of my recent order. Can you provide me with the current shipping information?'</li></ul> |
69
+ | product discoveribility | <ul><li>'Do you have any charm bracelets available at your store?'</li><li>'Do you have any statement Earrings that would be suitable for a wedding?'</li><li>'Do you have any choker-style necklaces that are trending right now?'</li></ul> |
70
+ | product faq | <ul><li>'What is the material used for the red round decorative tin box for wholesale orders?'</li><li>'Are the Adidas Yeezy Foam RNNR MX Cinder unisex?'</li><li>'Is the pack of 50 popcorn boxes available in different colors?'</li></ul> |
71
+ | product policy | <ul><li>'How can I find out my ring size before placing an order?'</li><li>'What is the warranty on candle supplies?'</li><li>'Can I get a refund for a necklace if it has a manufacturing defect?'</li></ul> |
72
+
73
+ ## Evaluation
74
+
75
+ ### Metrics
76
+ | Label | Accuracy |
77
+ |:--------|:---------|
78
+ | **all** | 0.9277 |
79
+
80
+ ## Uses
81
+
82
+ ### Direct Use for Inference
83
+
84
+ First install the SetFit library:
85
+
86
+ ```bash
87
+ pip install setfit
88
+ ```
89
+
90
+ Then you can load this model and run inference.
91
+
92
+ ```python
93
+ from setfit import SetFitModel
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SetFitModel.from_pretrained("setfit_model_id")
97
+ # Run inference
98
+ preds = model("What is the process for exchanging sneakers?")
99
+ ```
100
+
101
+ <!--
102
+ ### Downstream Use
103
+
104
+ *List how someone could finetune this model on their own dataset.*
105
+ -->
106
+
107
+ <!--
108
+ ### Out-of-Scope Use
109
+
110
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
111
+ -->
112
+
113
+ <!--
114
+ ## Bias, Risks and Limitations
115
+
116
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
117
+ -->
118
+
119
+ <!--
120
+ ### Recommendations
121
+
122
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
123
+ -->
124
+
125
+ ## Training Details
126
+
127
+ ### Training Set Metrics
128
+ | Training set | Min | Median | Max |
129
+ |:-------------|:----|:--------|:----|
130
+ | Word count | 4 | 15.4667 | 37 |
131
+
132
+ | Label | Training Sample Count |
133
+ |:------------------------|:----------------------|
134
+ | complaints | 20 |
135
+ | order tracking | 20 |
136
+ | product discoverability | 20 |
137
+ | product discoveribility | 20 |
138
+ | product faq | 20 |
139
+ | product policy | 20 |
140
+
141
+ ### Training Hyperparameters
142
+ - batch_size: (16, 16)
143
+ - num_epochs: (4, 4)
144
+ - max_steps: -1
145
+ - sampling_strategy: oversampling
146
+ - body_learning_rate: (2e-05, 1e-05)
147
+ - head_learning_rate: 0.01
148
+ - loss: CosineSimilarityLoss
149
+ - distance_metric: cosine_distance
150
+ - margin: 0.25
151
+ - end_to_end: False
152
+ - use_amp: False
153
+ - warmup_proportion: 0.1
154
+ - seed: 42
155
+ - eval_max_steps: -1
156
+ - load_best_model_at_end: True
157
+
158
+ ### Training Results
159
+ | Epoch | Step | Training Loss | Validation Loss |
160
+ |:------:|:----:|:-------------:|:---------------:|
161
+ | 0.0013 | 1 | 0.2116 | - |
162
+ | 0.0667 | 50 | 0.1402 | - |
163
+ | 0.1333 | 100 | 0.1163 | - |
164
+ | 0.2 | 150 | 0.024 | - |
165
+ | 0.2667 | 200 | 0.0037 | - |
166
+ | 0.3333 | 250 | 0.0016 | - |
167
+ | 0.4 | 300 | 0.0011 | - |
168
+ | 0.4667 | 350 | 0.0008 | - |
169
+ | 0.5333 | 400 | 0.0004 | - |
170
+ | 0.6 | 450 | 0.0005 | - |
171
+ | 0.6667 | 500 | 0.001 | - |
172
+ | 0.7333 | 550 | 0.0002 | - |
173
+ | 0.8 | 600 | 0.0002 | - |
174
+ | 0.8667 | 650 | 0.0003 | - |
175
+ | 0.9333 | 700 | 0.0002 | - |
176
+ | 1.0 | 750 | 0.0002 | - |
177
+ | 1.0667 | 800 | 0.0002 | - |
178
+ | 1.1333 | 850 | 0.0002 | - |
179
+ | 1.2 | 900 | 0.0001 | - |
180
+ | 1.2667 | 950 | 0.0001 | - |
181
+ | 1.3333 | 1000 | 0.0002 | - |
182
+ | 1.4 | 1050 | 0.0001 | - |
183
+ | 1.4667 | 1100 | 0.0001 | - |
184
+ | 1.5333 | 1150 | 0.0001 | - |
185
+ | 1.6 | 1200 | 0.0002 | - |
186
+ | 1.6667 | 1250 | 0.0001 | - |
187
+ | 1.7333 | 1300 | 0.0001 | - |
188
+ | 1.8 | 1350 | 0.0002 | - |
189
+ | 1.8667 | 1400 | 0.0001 | - |
190
+ | 1.9333 | 1450 | 0.0001 | - |
191
+ | 2.0 | 1500 | 0.0001 | - |
192
+ | 2.0667 | 1550 | 0.0001 | - |
193
+ | 2.1333 | 1600 | 0.0002 | - |
194
+ | 2.2 | 1650 | 0.0001 | - |
195
+ | 2.2667 | 1700 | 0.0001 | - |
196
+ | 2.3333 | 1750 | 0.0001 | - |
197
+ | 2.4 | 1800 | 0.0001 | - |
198
+ | 2.4667 | 1850 | 0.0001 | - |
199
+ | 2.5333 | 1900 | 0.0001 | - |
200
+ | 2.6 | 1950 | 0.0001 | - |
201
+ | 2.6667 | 2000 | 0.0001 | - |
202
+ | 2.7333 | 2050 | 0.0001 | - |
203
+ | 2.8 | 2100 | 0.0001 | - |
204
+ | 2.8667 | 2150 | 0.0001 | - |
205
+ | 2.9333 | 2200 | 0.0001 | - |
206
+ | 3.0 | 2250 | 0.0001 | - |
207
+ | 3.0667 | 2300 | 0.0001 | - |
208
+ | 3.1333 | 2350 | 0.0001 | - |
209
+ | 3.2 | 2400 | 0.0001 | - |
210
+ | 3.2667 | 2450 | 0.0001 | - |
211
+ | 3.3333 | 2500 | 0.0001 | - |
212
+ | 3.4 | 2550 | 0.0001 | - |
213
+ | 3.4667 | 2600 | 0.0001 | - |
214
+ | 3.5333 | 2650 | 0.0001 | - |
215
+ | 3.6 | 2700 | 0.0001 | - |
216
+ | 3.6667 | 2750 | 0.0001 | - |
217
+ | 3.7333 | 2800 | 0.0001 | - |
218
+ | 3.8 | 2850 | 0.0001 | - |
219
+ | 3.8667 | 2900 | 0.0001 | - |
220
+ | 3.9333 | 2950 | 0.0001 | - |
221
+ | 4.0 | 3000 | 0.0001 | - |
222
+
223
+ ### Framework Versions
224
+ - Python: 3.9.16
225
+ - SetFit: 1.0.3
226
+ - Sentence Transformers: 2.7.0
227
+ - Transformers: 4.40.1
228
+ - PyTorch: 2.3.0
229
+ - Datasets: 2.19.0
230
+ - Tokenizers: 0.19.1
231
+
232
+ ## Citation
233
+
234
+ ### BibTeX
235
+ ```bibtex
236
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
237
+ doi = {10.48550/ARXIV.2209.11055},
238
+ url = {https://arxiv.org/abs/2209.11055},
239
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
240
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
241
+ title = {Efficient Few-Shot Learning Without Prompts},
242
+ publisher = {arXiv},
243
+ year = {2022},
244
+ copyright = {Creative Commons Attribution 4.0 International}
245
+ }
246
+ ```
247
+
248
+ <!--
249
+ ## Glossary
250
+
251
+ *Clearly define terms in order to be accessible across audiences.*
252
+ -->
253
+
254
+ <!--
255
+ ## Model Card Authors
256
+
257
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
258
+ -->
259
+
260
+ <!--
261
+ ## Model Card Contact
262
+
263
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
264
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.40.1",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "complaints",
4
+ "order tracking",
5
+ "product discoverability",
6
+ "product discoveribility",
7
+ "product faq",
8
+ "product policy"
9
+ ],
10
+ "normalize_embeddings": false
11
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9cf05a6ea6f3d6bc0260b7b8fa89947d13e691d4dffa11ee25937ff6da3fa891
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6a802549e27335ab3dee1b924ba13d3f033957dbe3522c02056ba823944040d
3
+ size 38311
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff