Add SetFit model
Browse files- README.md +152 -69
- config_setfit.json +3 -2
- model.safetensors +1 -1
- model_head.pkl +2 -2
README.md
CHANGED
@@ -9,14 +9,15 @@ base_model: sentence-transformers/paraphrase-mpnet-base-v2
|
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
widget:
|
12 |
-
- text:
|
13 |
-
|
14 |
-
- text:
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
- text:
|
19 |
-
|
|
|
20 |
pipeline_tag: text-classification
|
21 |
inference: true
|
22 |
model-index:
|
@@ -31,7 +32,7 @@ model-index:
|
|
31 |
split: test
|
32 |
metrics:
|
33 |
- type: accuracy
|
34 |
-
value: 0.
|
35 |
name: Accuracy
|
36 |
---
|
37 |
|
@@ -51,7 +52,7 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
51 |
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
|
52 |
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
53 |
- **Maximum Sequence Length:** 512 tokens
|
54 |
-
- **Number of Classes:**
|
55 |
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
56 |
<!-- - **Language:** Unknown -->
|
57 |
<!-- - **License:** Unknown -->
|
@@ -63,20 +64,21 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
63 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
64 |
|
65 |
### Model Labels
|
66 |
-
| Label | Examples
|
67 |
-
|
68 |
-
| product
|
69 |
-
| order tracking | <ul><li>"
|
70 |
-
| complaints | <ul><li>"
|
71 |
-
| product
|
72 |
-
| product
|
|
|
73 |
|
74 |
## Evaluation
|
75 |
|
76 |
### Metrics
|
77 |
| Label | Accuracy |
|
78 |
|:--------|:---------|
|
79 |
-
| **all** | 0.
|
80 |
|
81 |
## Uses
|
82 |
|
@@ -96,7 +98,7 @@ from setfit import SetFitModel
|
|
96 |
# Download from the 🤗 Hub
|
97 |
model = SetFitModel.from_pretrained("setfit_model_id")
|
98 |
# Run inference
|
99 |
-
preds = model("
|
100 |
```
|
101 |
|
102 |
<!--
|
@@ -126,17 +128,18 @@ preds = model("What apparel do you have from Nike?")
|
|
126 |
## Training Details
|
127 |
|
128 |
### Training Set Metrics
|
129 |
-
| Training set | Min | Median
|
130 |
-
|
131 |
-
| Word count | 4 | 16.
|
132 |
|
133 |
| Label | Training Sample Count |
|
134 |
|:------------------------|:----------------------|
|
135 |
-
| complaints |
|
136 |
-
| order tracking |
|
137 |
-
| product discoverability |
|
|
|
138 |
| product faq | 20 |
|
139 |
-
| product policy |
|
140 |
|
141 |
### Training Hyperparameters
|
142 |
- batch_size: (16, 16)
|
@@ -156,49 +159,129 @@ preds = model("What apparel do you have from Nike?")
|
|
156 |
- load_best_model_at_end: True
|
157 |
|
158 |
### Training Results
|
159 |
-
| Epoch
|
160 |
-
|
161 |
-
| 0.
|
162 |
-
| 0.
|
163 |
-
| 0.
|
164 |
-
| 0.
|
165 |
-
| 0.
|
166 |
-
| 0.
|
167 |
-
| 0.
|
168 |
-
| 0.
|
169 |
-
| 0.
|
170 |
-
| 0.
|
171 |
-
|
|
172 |
-
|
|
173 |
-
|
|
174 |
-
|
|
175 |
-
|
|
176 |
-
|
|
177 |
-
|
|
178 |
-
|
|
179 |
-
|
|
180 |
-
|
|
181 |
-
|
|
182 |
-
|
|
183 |
-
|
|
184 |
-
|
|
185 |
-
|
|
186 |
-
|
|
187 |
-
|
|
188 |
-
|
|
189 |
-
|
|
190 |
-
|
|
191 |
-
|
|
192 |
-
|
|
193 |
-
|
|
194 |
-
|
|
195 |
-
|
|
196 |
-
|
|
197 |
-
|
|
198 |
-
|
|
199 |
-
|
|
200 |
-
| 3
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
### Framework Versions
|
204 |
- Python: 3.9.16
|
|
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
widget:
|
12 |
+
- text: I recently ordered the Bella Silver Pendant, but I haven't received any update
|
13 |
+
about the shipment. Can you provide me with the current status of my order?
|
14 |
+
- text: What is the metal purity of the Eternal Swirl Rose Gold Hoop Earring, and
|
15 |
+
does it come with a certificate of authenticity?
|
16 |
+
- text: Can you suggest some minimalist necklaces from your 'Best Sellers - Minimalist'
|
17 |
+
range?
|
18 |
+
- text: I recently ordered the Pearly Round Earring but haven't received any shipping
|
19 |
+
updates. Can you please provide me with the tracking information?
|
20 |
+
- text: what are the colors available in air jordan 4
|
21 |
pipeline_tag: text-classification
|
22 |
inference: true
|
23 |
model-index:
|
|
|
32 |
split: test
|
33 |
metrics:
|
34 |
- type: accuracy
|
35 |
+
value: 0.8762886597938144
|
36 |
name: Accuracy
|
37 |
---
|
38 |
|
|
|
52 |
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
|
53 |
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
54 |
- **Maximum Sequence Length:** 512 tokens
|
55 |
+
- **Number of Classes:** 6 classes
|
56 |
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
57 |
<!-- - **Language:** Unknown -->
|
58 |
<!-- - **License:** Unknown -->
|
|
|
64 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
65 |
|
66 |
### Model Labels
|
67 |
+
| Label | Examples |
|
68 |
+
|:------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
69 |
+
| product policy | <ul><li>'Are there any exceptions to the return policy for items that were purchased with a special offer promotion?'</li><li>'What is your policy on returning sneakers with added paint or dye?'</li><li>'Do you offer exchanges for items that were purchased with a special event celebration?'</li></ul> |
|
70 |
+
| order tracking | <ul><li>"I recently placed an order for the Regalia Gold Ring but I haven't received any confirmation or tracking details. Could you please update me on the status of my order?"</li><li>'What is the process for rerouting a shipment to a different address?'</li><li>"I recently ordered a Three Crystal Proposal Ring but haven't received any shipping updates yet. Could you please provide me with the current status of my order?"</li></ul> |
|
71 |
+
| complaints | <ul><li>"I recently bought the Golden Love Affair Pendant, but it seems to have tarnished very quickly. I'm not satisfied with the quality. What can you do about this?"</li><li>"I recently purchased the Three Crystal Proposal Ring, but I'm disappointed to find that one of the crystals is loose. Can you assist me with this issue?"</li><li>'I received my Kali- Handcrafted Earring today, but I found that one earring is slightly different from the other in design. Can you help me with this issue?'</li></ul> |
|
72 |
+
| product faq | <ul><li>'What is the material used for making the All the Stars Pendant Set, and does it come with matching earrings?'</li><li>'What is the Bold and Beautiful Link Ring made of, and could you provide information on sizing and care instructions?'</li><li>'What is the material used for making the Sheer Heart Ring, and is it available in different sizes?'</li></ul> |
|
73 |
+
| product discoveribility | <ul><li>"I'm interested in necklaces that have an adjustable length. What options do you have?"</li><li>'Do you have any charm bracelets available at your store?'</li><li>'Could you suggest some pendants that would go well with traditional attire?'</li></ul> |
|
74 |
+
| product discoverability | <ul><li>'Types of bakery boxes available'</li><li>'adidas sneakers under 25k'</li><li>'show me 100 cookie boxes under $50'</li></ul> |
|
75 |
|
76 |
## Evaluation
|
77 |
|
78 |
### Metrics
|
79 |
| Label | Accuracy |
|
80 |
|:--------|:---------|
|
81 |
+
| **all** | 0.8763 |
|
82 |
|
83 |
## Uses
|
84 |
|
|
|
98 |
# Download from the 🤗 Hub
|
99 |
model = SetFitModel.from_pretrained("setfit_model_id")
|
100 |
# Run inference
|
101 |
+
preds = model("what are the colors available in air jordan 4")
|
102 |
```
|
103 |
|
104 |
<!--
|
|
|
128 |
## Training Details
|
129 |
|
130 |
### Training Set Metrics
|
131 |
+
| Training set | Min | Median | Max |
|
132 |
+
|:-------------|:----|:--------|:----|
|
133 |
+
| Word count | 4 | 16.2235 | 36 |
|
134 |
|
135 |
| Label | Training Sample Count |
|
136 |
|:------------------------|:----------------------|
|
137 |
+
| complaints | 30 |
|
138 |
+
| order tracking | 30 |
|
139 |
+
| product discoverability | 30 |
|
140 |
+
| product discoveribility | 30 |
|
141 |
| product faq | 20 |
|
142 |
+
| product policy | 30 |
|
143 |
|
144 |
### Training Hyperparameters
|
145 |
- batch_size: (16, 16)
|
|
|
159 |
- load_best_model_at_end: True
|
160 |
|
161 |
### Training Results
|
162 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
163 |
+
|:------:|:----:|:-------------:|:---------------:|
|
164 |
+
| 0.0007 | 1 | 0.1501 | - |
|
165 |
+
| 0.0333 | 50 | 0.1693 | - |
|
166 |
+
| 0.0667 | 100 | 0.0692 | - |
|
167 |
+
| 0.1 | 150 | 0.0311 | - |
|
168 |
+
| 0.1333 | 200 | 0.0182 | - |
|
169 |
+
| 0.1667 | 250 | 0.0033 | - |
|
170 |
+
| 0.2 | 300 | 0.0025 | - |
|
171 |
+
| 0.2333 | 350 | 0.0013 | - |
|
172 |
+
| 0.2667 | 400 | 0.0008 | - |
|
173 |
+
| 0.3 | 450 | 0.0011 | - |
|
174 |
+
| 0.3333 | 500 | 0.0005 | - |
|
175 |
+
| 0.3667 | 550 | 0.0005 | - |
|
176 |
+
| 0.4 | 600 | 0.0003 | - |
|
177 |
+
| 0.4333 | 650 | 0.0002 | - |
|
178 |
+
| 0.4667 | 700 | 0.0003 | - |
|
179 |
+
| 0.5 | 750 | 0.0003 | - |
|
180 |
+
| 0.5333 | 800 | 0.0004 | - |
|
181 |
+
| 0.5667 | 850 | 0.0003 | - |
|
182 |
+
| 0.6 | 900 | 0.0002 | - |
|
183 |
+
| 0.6333 | 950 | 0.0001 | - |
|
184 |
+
| 0.6667 | 1000 | 0.0001 | - |
|
185 |
+
| 0.7 | 1050 | 0.0001 | - |
|
186 |
+
| 0.7333 | 1100 | 0.0002 | - |
|
187 |
+
| 0.7667 | 1150 | 0.0002 | - |
|
188 |
+
| 0.8 | 1200 | 0.0001 | - |
|
189 |
+
| 0.8333 | 1250 | 0.0001 | - |
|
190 |
+
| 0.8667 | 1300 | 0.0001 | - |
|
191 |
+
| 0.9 | 1350 | 0.0001 | - |
|
192 |
+
| 0.9333 | 1400 | 0.0002 | - |
|
193 |
+
| 0.9667 | 1450 | 0.0001 | - |
|
194 |
+
| 1.0 | 1500 | 0.0002 | - |
|
195 |
+
| 1.0333 | 1550 | 0.0001 | - |
|
196 |
+
| 1.0667 | 1600 | 0.0001 | - |
|
197 |
+
| 1.1 | 1650 | 0.0001 | - |
|
198 |
+
| 1.1333 | 1700 | 0.0001 | - |
|
199 |
+
| 1.1667 | 1750 | 0.0002 | - |
|
200 |
+
| 1.2 | 1800 | 0.0001 | - |
|
201 |
+
| 1.2333 | 1850 | 0.0001 | - |
|
202 |
+
| 1.2667 | 1900 | 0.0001 | - |
|
203 |
+
| 1.3 | 1950 | 0.0001 | - |
|
204 |
+
| 1.3333 | 2000 | 0.0001 | - |
|
205 |
+
| 1.3667 | 2050 | 0.0001 | - |
|
206 |
+
| 1.4 | 2100 | 0.0001 | - |
|
207 |
+
| 1.4333 | 2150 | 0.0001 | - |
|
208 |
+
| 1.4667 | 2200 | 0.0001 | - |
|
209 |
+
| 1.5 | 2250 | 0.0001 | - |
|
210 |
+
| 1.5333 | 2300 | 0.0001 | - |
|
211 |
+
| 1.5667 | 2350 | 0.0001 | - |
|
212 |
+
| 1.6 | 2400 | 0.0 | - |
|
213 |
+
| 1.6333 | 2450 | 0.0001 | - |
|
214 |
+
| 1.6667 | 2500 | 0.0001 | - |
|
215 |
+
| 1.7 | 2550 | 0.0 | - |
|
216 |
+
| 1.7333 | 2600 | 0.0001 | - |
|
217 |
+
| 1.7667 | 2650 | 0.0001 | - |
|
218 |
+
| 1.8 | 2700 | 0.0001 | - |
|
219 |
+
| 1.8333 | 2750 | 0.0001 | - |
|
220 |
+
| 1.8667 | 2800 | 0.0001 | - |
|
221 |
+
| 1.9 | 2850 | 0.0 | - |
|
222 |
+
| 1.9333 | 2900 | 0.0001 | - |
|
223 |
+
| 1.9667 | 2950 | 0.0 | - |
|
224 |
+
| 2.0 | 3000 | 0.0 | - |
|
225 |
+
| 2.0333 | 3050 | 0.0001 | - |
|
226 |
+
| 2.0667 | 3100 | 0.0 | - |
|
227 |
+
| 2.1 | 3150 | 0.0001 | - |
|
228 |
+
| 2.1333 | 3200 | 0.0001 | - |
|
229 |
+
| 2.1667 | 3250 | 0.0 | - |
|
230 |
+
| 2.2 | 3300 | 0.0001 | - |
|
231 |
+
| 2.2333 | 3350 | 0.0001 | - |
|
232 |
+
| 2.2667 | 3400 | 0.0001 | - |
|
233 |
+
| 2.3 | 3450 | 0.0 | - |
|
234 |
+
| 2.3333 | 3500 | 0.0001 | - |
|
235 |
+
| 2.3667 | 3550 | 0.0 | - |
|
236 |
+
| 2.4 | 3600 | 0.0 | - |
|
237 |
+
| 2.4333 | 3650 | 0.0 | - |
|
238 |
+
| 2.4667 | 3700 | 0.0001 | - |
|
239 |
+
| 2.5 | 3750 | 0.0 | - |
|
240 |
+
| 2.5333 | 3800 | 0.0001 | - |
|
241 |
+
| 2.5667 | 3850 | 0.0 | - |
|
242 |
+
| 2.6 | 3900 | 0.0001 | - |
|
243 |
+
| 2.6333 | 3950 | 0.0 | - |
|
244 |
+
| 2.6667 | 4000 | 0.0001 | - |
|
245 |
+
| 2.7 | 4050 | 0.0001 | - |
|
246 |
+
| 2.7333 | 4100 | 0.0 | - |
|
247 |
+
| 2.7667 | 4150 | 0.0 | - |
|
248 |
+
| 2.8 | 4200 | 0.0 | - |
|
249 |
+
| 2.8333 | 4250 | 0.0 | - |
|
250 |
+
| 2.8667 | 4300 | 0.0 | - |
|
251 |
+
| 2.9 | 4350 | 0.0 | - |
|
252 |
+
| 2.9333 | 4400 | 0.0 | - |
|
253 |
+
| 2.9667 | 4450 | 0.0001 | - |
|
254 |
+
| 3.0 | 4500 | 0.0 | - |
|
255 |
+
| 3.0333 | 4550 | 0.0001 | - |
|
256 |
+
| 3.0667 | 4600 | 0.0 | - |
|
257 |
+
| 3.1 | 4650 | 0.0 | - |
|
258 |
+
| 3.1333 | 4700 | 0.0001 | - |
|
259 |
+
| 3.1667 | 4750 | 0.0 | - |
|
260 |
+
| 3.2 | 4800 | 0.0 | - |
|
261 |
+
| 3.2333 | 4850 | 0.0 | - |
|
262 |
+
| 3.2667 | 4900 | 0.0 | - |
|
263 |
+
| 3.3 | 4950 | 0.0001 | - |
|
264 |
+
| 3.3333 | 5000 | 0.0 | - |
|
265 |
+
| 3.3667 | 5050 | 0.0 | - |
|
266 |
+
| 3.4 | 5100 | 0.0001 | - |
|
267 |
+
| 3.4333 | 5150 | 0.0 | - |
|
268 |
+
| 3.4667 | 5200 | 0.0 | - |
|
269 |
+
| 3.5 | 5250 | 0.0001 | - |
|
270 |
+
| 3.5333 | 5300 | 0.0 | - |
|
271 |
+
| 3.5667 | 5350 | 0.0 | - |
|
272 |
+
| 3.6 | 5400 | 0.0 | - |
|
273 |
+
| 3.6333 | 5450 | 0.0 | - |
|
274 |
+
| 3.6667 | 5500 | 0.0 | - |
|
275 |
+
| 3.7 | 5550 | 0.0001 | - |
|
276 |
+
| 3.7333 | 5600 | 0.0 | - |
|
277 |
+
| 3.7667 | 5650 | 0.0 | - |
|
278 |
+
| 3.8 | 5700 | 0.0 | - |
|
279 |
+
| 3.8333 | 5750 | 0.0 | - |
|
280 |
+
| 3.8667 | 5800 | 0.0 | - |
|
281 |
+
| 3.9 | 5850 | 0.0 | - |
|
282 |
+
| 3.9333 | 5900 | 0.0 | - |
|
283 |
+
| 3.9667 | 5950 | 0.0001 | - |
|
284 |
+
| 4.0 | 6000 | 0.0 | - |
|
285 |
|
286 |
### Framework Versions
|
287 |
- Python: 3.9.16
|
config_setfit.json
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
{
|
2 |
-
"normalize_embeddings": false,
|
3 |
"labels": [
|
4 |
"complaints",
|
5 |
"order tracking",
|
6 |
"product discoverability",
|
|
|
7 |
"product faq",
|
8 |
"product policy"
|
9 |
-
]
|
|
|
10 |
}
|
|
|
1 |
{
|
|
|
2 |
"labels": [
|
3 |
"complaints",
|
4 |
"order tracking",
|
5 |
"product discoverability",
|
6 |
+
"product discoveribility",
|
7 |
"product faq",
|
8 |
"product policy"
|
9 |
+
],
|
10 |
+
"normalize_embeddings": false
|
11 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 437967672
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae03ac1345d3ba6c609f184a07acf7265b5deee425cd424ce18ec3f74561823b
|
3 |
size 437967672
|
model_head.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c7f26962d0c6ba43552743b68ebd7babd714d75d7a6158192612125e28b2b8c
|
3 |
+
size 38311
|