Shankhdhar commited on
Commit
ddae5a1
·
verified ·
1 Parent(s): cd1dbe1

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: Do you have the Nike Blazer Mid sacai Snow Beach in size 9?
14
+ - text: How can I adapt K-beauty routines for dry weather?
15
+ - text: I like to listen to classical music
16
+ - text: If this product is for weight management, what is the sub-category?
17
+ - text: How long does it take to receive a refund after returning a product?
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 0.8711340206185567
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 6 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | product policy | <ul><li>'Do you offer a gift wrapping service for sneakers?'</li><li>'What are the consequences if my account is suspended or terminated for any reason?'</li><li>'Do you share my personal information with third parties?'</li></ul> |
66
+ | general faq | <ul><li>'Can you explain why Mashru silk is considered more comfortable to wear compared to pure silk sarees?'</li><li>'What are some tips for maximizing the antioxidant content when brewing green tea?'</li><li>'Can you recommend K-beauty products for hot and humid climates?'</li></ul> |
67
+ | product discoverability | <ul><li>'Are there any sarees with Kadwa Weave technique?'</li><li>'cookie boxes with dividers'</li><li>'Are there any products for dry skin?'</li></ul> |
68
+ | Out of Scope | <ul><li>'Is this website secure?'</li><li>'How do you handle intellectual property disputes?'</li><li>'Do you know how to play the piano?'</li></ul> |
69
+ | order tracking | <ul><li>'I want to deliver candle supplies to Jaipur, how many days will it take to deliver?'</li><li>'I want to deliver bags to Pune, how many days will it take to deliver?'</li><li>'I need to change the delivery address for my recent order, how can I do that?'</li></ul> |
70
+ | product faq | <ul><li>'Does this product help with dark spots?'</li><li>'3. Is this product currently in stock?'</li><li>'Is the product in stock?'</li></ul> |
71
+
72
+ ## Evaluation
73
+
74
+ ### Metrics
75
+ | Label | Accuracy |
76
+ |:--------|:---------|
77
+ | **all** | 0.8711 |
78
+
79
+ ## Uses
80
+
81
+ ### Direct Use for Inference
82
+
83
+ First install the SetFit library:
84
+
85
+ ```bash
86
+ pip install setfit
87
+ ```
88
+
89
+ Then you can load this model and run inference.
90
+
91
+ ```python
92
+ from setfit import SetFitModel
93
+
94
+ # Download from the 🤗 Hub
95
+ model = SetFitModel.from_pretrained("setfit_model_id")
96
+ # Run inference
97
+ preds = model("I like to listen to classical music")
98
+ ```
99
+
100
+ <!--
101
+ ### Downstream Use
102
+
103
+ *List how someone could finetune this model on their own dataset.*
104
+ -->
105
+
106
+ <!--
107
+ ### Out-of-Scope Use
108
+
109
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
110
+ -->
111
+
112
+ <!--
113
+ ## Bias, Risks and Limitations
114
+
115
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
116
+ -->
117
+
118
+ <!--
119
+ ### Recommendations
120
+
121
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
122
+ -->
123
+
124
+ ## Training Details
125
+
126
+ ### Training Set Metrics
127
+ | Training set | Min | Median | Max |
128
+ |:-------------|:----|:-------|:----|
129
+ | Word count | 4 | 10.66 | 28 |
130
+
131
+ | Label | Training Sample Count |
132
+ |:------------------------|:----------------------|
133
+ | Out of Scope | 50 |
134
+ | general faq | 50 |
135
+ | order tracking | 50 |
136
+ | product discoverability | 50 |
137
+ | product faq | 50 |
138
+ | product policy | 50 |
139
+
140
+ ### Training Hyperparameters
141
+ - batch_size: (16, 16)
142
+ - num_epochs: (2, 2)
143
+ - max_steps: -1
144
+ - sampling_strategy: oversampling
145
+ - body_learning_rate: (2e-05, 1e-05)
146
+ - head_learning_rate: 0.01
147
+ - loss: CosineSimilarityLoss
148
+ - distance_metric: cosine_distance
149
+ - margin: 0.25
150
+ - end_to_end: False
151
+ - use_amp: False
152
+ - warmup_proportion: 0.1
153
+ - seed: 42
154
+ - eval_max_steps: -1
155
+ - load_best_model_at_end: True
156
+
157
+ ### Training Results
158
+ | Epoch | Step | Training Loss | Validation Loss |
159
+ |:------:|:----:|:-------------:|:---------------:|
160
+ | 0.0002 | 1 | 0.2592 | - |
161
+ | 0.0107 | 50 | 0.2424 | - |
162
+ | 0.0213 | 100 | 0.1506 | - |
163
+ | 0.0320 | 150 | 0.222 | - |
164
+ | 0.0427 | 200 | 0.1227 | - |
165
+ | 0.0533 | 250 | 0.1801 | - |
166
+ | 0.0640 | 300 | 0.1111 | - |
167
+ | 0.0747 | 350 | 0.0346 | - |
168
+ | 0.0853 | 400 | 0.0313 | - |
169
+ | 0.0960 | 450 | 0.0048 | - |
170
+ | 0.1067 | 500 | 0.0023 | - |
171
+ | 0.1173 | 550 | 0.0018 | - |
172
+ | 0.1280 | 600 | 0.0133 | - |
173
+ | 0.1387 | 650 | 0.0008 | - |
174
+ | 0.1493 | 700 | 0.0006 | - |
175
+ | 0.1600 | 750 | 0.0005 | - |
176
+ | 0.1706 | 800 | 0.0008 | - |
177
+ | 0.1813 | 850 | 0.0007 | - |
178
+ | 0.1920 | 900 | 0.0006 | - |
179
+ | 0.2026 | 950 | 0.0006 | - |
180
+ | 0.2133 | 1000 | 0.0003 | - |
181
+ | 0.2240 | 1050 | 0.0026 | - |
182
+ | 0.2346 | 1100 | 0.0004 | - |
183
+ | 0.2453 | 1150 | 0.0004 | - |
184
+ | 0.2560 | 1200 | 0.0004 | - |
185
+ | 0.2666 | 1250 | 0.0005 | - |
186
+ | 0.2773 | 1300 | 0.0005 | - |
187
+ | 0.2880 | 1350 | 0.0003 | - |
188
+ | 0.2986 | 1400 | 0.0001 | - |
189
+ | 0.3093 | 1450 | 0.0001 | - |
190
+ | 0.3200 | 1500 | 0.0002 | - |
191
+ | 0.3306 | 1550 | 0.0002 | - |
192
+ | 0.3413 | 1600 | 0.0002 | - |
193
+ | 0.3520 | 1650 | 0.0001 | - |
194
+ | 0.3626 | 1700 | 0.0004 | - |
195
+ | 0.3733 | 1750 | 0.0002 | - |
196
+ | 0.3840 | 1800 | 0.0005 | - |
197
+ | 0.3946 | 1850 | 0.0002 | - |
198
+ | 0.4053 | 1900 | 0.0002 | - |
199
+ | 0.4160 | 1950 | 0.0001 | - |
200
+ | 0.4266 | 2000 | 0.0001 | - |
201
+ | 0.4373 | 2050 | 0.0001 | - |
202
+ | 0.4480 | 2100 | 0.0001 | - |
203
+ | 0.4586 | 2150 | 0.0001 | - |
204
+ | 0.4693 | 2200 | 0.0002 | - |
205
+ | 0.4799 | 2250 | 0.0048 | - |
206
+ | 0.4906 | 2300 | 0.0001 | - |
207
+ | 0.5013 | 2350 | 0.001 | - |
208
+ | 0.5119 | 2400 | 0.0002 | - |
209
+ | 0.5226 | 2450 | 0.0002 | - |
210
+ | 0.5333 | 2500 | 0.0001 | - |
211
+ | 0.5439 | 2550 | 0.0001 | - |
212
+ | 0.5546 | 2600 | 0.0001 | - |
213
+ | 0.5653 | 2650 | 0.0001 | - |
214
+ | 0.5759 | 2700 | 0.0001 | - |
215
+ | 0.5866 | 2750 | 0.0001 | - |
216
+ | 0.5973 | 2800 | 0.0001 | - |
217
+ | 0.6079 | 2850 | 0.0001 | - |
218
+ | 0.6186 | 2900 | 0.0001 | - |
219
+ | 0.6293 | 2950 | 0.0001 | - |
220
+ | 0.6399 | 3000 | 0.0001 | - |
221
+ | 0.6506 | 3050 | 0.0001 | - |
222
+ | 0.6613 | 3100 | 0.0001 | - |
223
+ | 0.6719 | 3150 | 0.0001 | - |
224
+ | 0.6826 | 3200 | 0.0001 | - |
225
+ | 0.6933 | 3250 | 0.0001 | - |
226
+ | 0.7039 | 3300 | 0.0001 | - |
227
+ | 0.7146 | 3350 | 0.0001 | - |
228
+ | 0.7253 | 3400 | 0.0001 | - |
229
+ | 0.7359 | 3450 | 0.0001 | - |
230
+ | 0.7466 | 3500 | 0.0001 | - |
231
+ | 0.7573 | 3550 | 0.0001 | - |
232
+ | 0.7679 | 3600 | 0.0001 | - |
233
+ | 0.7786 | 3650 | 0.0001 | - |
234
+ | 0.7892 | 3700 | 0.0001 | - |
235
+ | 0.7999 | 3750 | 0.0001 | - |
236
+ | 0.8106 | 3800 | 0.0001 | - |
237
+ | 0.8212 | 3850 | 0.0 | - |
238
+ | 0.8319 | 3900 | 0.0001 | - |
239
+ | 0.8426 | 3950 | 0.0001 | - |
240
+ | 0.8532 | 4000 | 0.0001 | - |
241
+ | 0.8639 | 4050 | 0.0001 | - |
242
+ | 0.8746 | 4100 | 0.0001 | - |
243
+ | 0.8852 | 4150 | 0.0 | - |
244
+ | 0.8959 | 4200 | 0.0001 | - |
245
+ | 0.9066 | 4250 | 0.0001 | - |
246
+ | 0.9172 | 4300 | 0.0001 | - |
247
+ | 0.9279 | 4350 | 0.0001 | - |
248
+ | 0.9386 | 4400 | 0.0001 | - |
249
+ | 0.9492 | 4450 | 0.0001 | - |
250
+ | 0.9599 | 4500 | 0.0001 | - |
251
+ | 0.9706 | 4550 | 0.0001 | - |
252
+ | 0.9812 | 4600 | 0.0 | - |
253
+ | 0.9919 | 4650 | 0.0001 | - |
254
+ | 1.0026 | 4700 | 0.0 | - |
255
+ | 1.0132 | 4750 | 0.0001 | - |
256
+ | 1.0239 | 4800 | 0.0001 | - |
257
+ | 1.0346 | 4850 | 0.0001 | - |
258
+ | 1.0452 | 4900 | 0.0001 | - |
259
+ | 1.0559 | 4950 | 0.0001 | - |
260
+ | 1.0666 | 5000 | 0.0 | - |
261
+ | 1.0772 | 5050 | 0.0 | - |
262
+ | 1.0879 | 5100 | 0.0001 | - |
263
+ | 1.0985 | 5150 | 0.0 | - |
264
+ | 1.1092 | 5200 | 0.0 | - |
265
+ | 1.1199 | 5250 | 0.0 | - |
266
+ | 1.1305 | 5300 | 0.0001 | - |
267
+ | 1.1412 | 5350 | 0.0001 | - |
268
+ | 1.1519 | 5400 | 0.0 | - |
269
+ | 1.1625 | 5450 | 0.0001 | - |
270
+ | 1.1732 | 5500 | 0.0001 | - |
271
+ | 1.1839 | 5550 | 0.0002 | - |
272
+ | 1.1945 | 5600 | 0.0 | - |
273
+ | 1.2052 | 5650 | 0.0 | - |
274
+ | 1.2159 | 5700 | 0.0 | - |
275
+ | 1.2265 | 5750 | 0.0 | - |
276
+ | 1.2372 | 5800 | 0.0001 | - |
277
+ | 1.2479 | 5850 | 0.0001 | - |
278
+ | 1.2585 | 5900 | 0.0001 | - |
279
+ | 1.2692 | 5950 | 0.0 | - |
280
+ | 1.2799 | 6000 | 0.0 | - |
281
+ | 1.2905 | 6050 | 0.0 | - |
282
+ | 1.3012 | 6100 | 0.0001 | - |
283
+ | 1.3119 | 6150 | 0.0 | - |
284
+ | 1.3225 | 6200 | 0.0 | - |
285
+ | 1.3332 | 6250 | 0.0 | - |
286
+ | 1.3439 | 6300 | 0.0 | - |
287
+ | 1.3545 | 6350 | 0.0 | - |
288
+ | 1.3652 | 6400 | 0.0 | - |
289
+ | 1.3759 | 6450 | 0.0 | - |
290
+ | 1.3865 | 6500 | 0.0 | - |
291
+ | 1.3972 | 6550 | 0.0 | - |
292
+ | 1.4078 | 6600 | 0.0 | - |
293
+ | 1.4185 | 6650 | 0.0 | - |
294
+ | 1.4292 | 6700 | 0.0 | - |
295
+ | 1.4398 | 6750 | 0.0 | - |
296
+ | 1.4505 | 6800 | 0.0 | - |
297
+ | 1.4612 | 6850 | 0.0 | - |
298
+ | 1.4718 | 6900 | 0.0001 | - |
299
+ | 1.4825 | 6950 | 0.0001 | - |
300
+ | 1.4932 | 7000 | 0.0 | - |
301
+ | 1.5038 | 7050 | 0.0 | - |
302
+ | 1.5145 | 7100 | 0.0001 | - |
303
+ | 1.5252 | 7150 | 0.0001 | - |
304
+ | 1.5358 | 7200 | 0.0001 | - |
305
+ | 1.5465 | 7250 | 0.0001 | - |
306
+ | 1.5572 | 7300 | 0.0 | - |
307
+ | 1.5678 | 7350 | 0.0 | - |
308
+ | 1.5785 | 7400 | 0.0 | - |
309
+ | 1.5892 | 7450 | 0.0001 | - |
310
+ | 1.5998 | 7500 | 0.0 | - |
311
+ | 1.6105 | 7550 | 0.0 | - |
312
+ | 1.6212 | 7600 | 0.0 | - |
313
+ | 1.6318 | 7650 | 0.0 | - |
314
+ | 1.6425 | 7700 | 0.0 | - |
315
+ | 1.6532 | 7750 | 0.0 | - |
316
+ | 1.6638 | 7800 | 0.0 | - |
317
+ | 1.6745 | 7850 | 0.0 | - |
318
+ | 1.6852 | 7900 | 0.0 | - |
319
+ | 1.6958 | 7950 | 0.0 | - |
320
+ | 1.7065 | 8000 | 0.0 | - |
321
+ | 1.7172 | 8050 | 0.0 | - |
322
+ | 1.7278 | 8100 | 0.0 | - |
323
+ | 1.7385 | 8150 | 0.0001 | - |
324
+ | 1.7491 | 8200 | 0.0 | - |
325
+ | 1.7598 | 8250 | 0.0 | - |
326
+ | 1.7705 | 8300 | 0.0 | - |
327
+ | 1.7811 | 8350 | 0.0001 | - |
328
+ | 1.7918 | 8400 | 0.0 | - |
329
+ | 1.8025 | 8450 | 0.0 | - |
330
+ | 1.8131 | 8500 | 0.0 | - |
331
+ | 1.8238 | 8550 | 0.0 | - |
332
+ | 1.8345 | 8600 | 0.0001 | - |
333
+ | 1.8451 | 8650 | 0.0 | - |
334
+ | 1.8558 | 8700 | 0.0 | - |
335
+ | 1.8665 | 8750 | 0.0001 | - |
336
+ | 1.8771 | 8800 | 0.0 | - |
337
+ | 1.8878 | 8850 | 0.0 | - |
338
+ | 1.8985 | 8900 | 0.0 | - |
339
+ | 1.9091 | 8950 | 0.0001 | - |
340
+ | 1.9198 | 9000 | 0.0 | - |
341
+ | 1.9305 | 9050 | 0.0 | - |
342
+ | 1.9411 | 9100 | 0.0 | - |
343
+ | 1.9518 | 9150 | 0.0 | - |
344
+ | 1.9625 | 9200 | 0.0 | - |
345
+ | 1.9731 | 9250 | 0.0 | - |
346
+ | 1.9838 | 9300 | 0.0 | - |
347
+ | 1.9945 | 9350 | 0.0 | - |
348
+
349
+ ### Framework Versions
350
+ - Python: 3.10.16
351
+ - SetFit: 1.0.3
352
+ - Sentence Transformers: 2.7.0
353
+ - Transformers: 4.40.2
354
+ - PyTorch: 2.2.2
355
+ - Datasets: 2.19.1
356
+ - Tokenizers: 0.19.1
357
+
358
+ ## Citation
359
+
360
+ ### BibTeX
361
+ ```bibtex
362
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
363
+ doi = {10.48550/ARXIV.2209.11055},
364
+ url = {https://arxiv.org/abs/2209.11055},
365
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
366
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
367
+ title = {Efficient Few-Shot Learning Without Prompts},
368
+ publisher = {arXiv},
369
+ year = {2022},
370
+ copyright = {Creative Commons Attribution 4.0 International}
371
+ }
372
+ ```
373
+
374
+ <!--
375
+ ## Glossary
376
+
377
+ *Clearly define terms in order to be accessible across audiences.*
378
+ -->
379
+
380
+ <!--
381
+ ## Model Card Authors
382
+
383
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
384
+ -->
385
+
386
+ <!--
387
+ ## Model Card Contact
388
+
389
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
390
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.40.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "Out of Scope",
4
+ "general faq",
5
+ "order tracking",
6
+ "product discoverability",
7
+ "product faq",
8
+ "product policy"
9
+ ],
10
+ "normalize_embeddings": false
11
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b3000324e561d558a68b0639ebe19d47d5f7186b1b3b98bb1a6ccd4315f4dd8
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7b3b75cc99c2d45f4ba420739cad3e8df412d67b3212eafd46cc0489b023a19
3
+ size 38311
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff