End of training
Browse files
README.md
CHANGED
@@ -17,7 +17,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
- Accuracy: 0.9737
|
22 |
|
23 |
## Model description
|
@@ -49,54 +49,54 @@ The following hyperparameters were used during training:
|
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
-
|
|
53 |
-
| 0.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.0012 | 7.5 | 360 | 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.0009 | 9.38 | 450 | 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.0006 | 12.5 | 600 | 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.0005 | 15.0 | 720 | 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.0004 | 17.5 | 840 | 0.
|
80 |
-
| 0.0004 | 18.12 | 870 | 0.
|
81 |
-
| 0.0004 | 18.75 | 900 | 0.
|
82 |
-
| 0.0004 | 19.38 | 930 | 0.
|
83 |
-
| 0.0004 | 20.0 | 960 | 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.0003 | 24.38 | 1170 | 0.
|
91 |
-
| 0.0003 | 25.0 | 1200 | 0.
|
92 |
-
| 0.0003 | 25.62 | 1230 | 0.
|
93 |
-
| 0.0003 | 26.25 | 1260 | 0.
|
94 |
-
| 0.0003 | 26.88 | 1290 | 0.
|
95 |
-
| 0.0003 | 27.5 | 1320 | 0.
|
96 |
-
| 0.0003 | 28.12 | 1350 | 0.
|
97 |
-
| 0.0003 | 28.75 | 1380 | 0.
|
98 |
-
| 0.0003 | 29.38 | 1410 | 0.
|
99 |
-
| 0.0003 | 30.0 | 1440 | 0.
|
100 |
|
101 |
|
102 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0774
|
21 |
- Accuracy: 0.9737
|
22 |
|
23 |
## Model description
|
|
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| 0.9838 | 0.62 | 30 | 0.4844 | 1.0 |
|
53 |
+
| 0.3561 | 1.25 | 60 | 0.1123 | 0.9737 |
|
54 |
+
| 0.1232 | 1.88 | 90 | 0.1118 | 0.9737 |
|
55 |
+
| 0.0377 | 2.5 | 120 | 0.0134 | 1.0 |
|
56 |
+
| 0.0088 | 3.12 | 150 | 0.1223 | 0.9737 |
|
57 |
+
| 0.0039 | 3.75 | 180 | 0.0856 | 0.9737 |
|
58 |
+
| 0.0027 | 4.38 | 210 | 0.0647 | 0.9737 |
|
59 |
+
| 0.0022 | 5.0 | 240 | 0.0703 | 0.9737 |
|
60 |
+
| 0.0018 | 5.62 | 270 | 0.0720 | 0.9737 |
|
61 |
+
| 0.0015 | 6.25 | 300 | 0.0725 | 0.9737 |
|
62 |
+
| 0.0013 | 6.88 | 330 | 0.0779 | 0.9737 |
|
63 |
+
| 0.0012 | 7.5 | 360 | 0.0730 | 0.9737 |
|
64 |
+
| 0.001 | 8.12 | 390 | 0.0739 | 0.9737 |
|
65 |
+
| 0.0009 | 8.75 | 420 | 0.0716 | 0.9737 |
|
66 |
+
| 0.0009 | 9.38 | 450 | 0.0735 | 0.9737 |
|
67 |
+
| 0.0008 | 10.0 | 480 | 0.0725 | 0.9737 |
|
68 |
+
| 0.0007 | 10.62 | 510 | 0.0710 | 0.9737 |
|
69 |
+
| 0.0007 | 11.25 | 540 | 0.0715 | 0.9737 |
|
70 |
+
| 0.0006 | 11.88 | 570 | 0.0718 | 0.9737 |
|
71 |
+
| 0.0006 | 12.5 | 600 | 0.0719 | 0.9737 |
|
72 |
+
| 0.0005 | 13.12 | 630 | 0.0728 | 0.9737 |
|
73 |
+
| 0.0005 | 13.75 | 660 | 0.0746 | 0.9737 |
|
74 |
+
| 0.0005 | 14.38 | 690 | 0.0753 | 0.9737 |
|
75 |
+
| 0.0005 | 15.0 | 720 | 0.0747 | 0.9737 |
|
76 |
+
| 0.0004 | 15.62 | 750 | 0.0742 | 0.9737 |
|
77 |
+
| 0.0004 | 16.25 | 780 | 0.0762 | 0.9737 |
|
78 |
+
| 0.0004 | 16.88 | 810 | 0.0762 | 0.9737 |
|
79 |
+
| 0.0004 | 17.5 | 840 | 0.0769 | 0.9737 |
|
80 |
+
| 0.0004 | 18.12 | 870 | 0.0776 | 0.9737 |
|
81 |
+
| 0.0004 | 18.75 | 900 | 0.0765 | 0.9737 |
|
82 |
+
| 0.0004 | 19.38 | 930 | 0.0770 | 0.9737 |
|
83 |
+
| 0.0004 | 20.0 | 960 | 0.0762 | 0.9737 |
|
84 |
+
| 0.0003 | 20.62 | 990 | 0.0762 | 0.9737 |
|
85 |
+
| 0.0003 | 21.25 | 1020 | 0.0766 | 0.9737 |
|
86 |
+
| 0.0003 | 21.88 | 1050 | 0.0765 | 0.9737 |
|
87 |
+
| 0.0003 | 22.5 | 1080 | 0.0773 | 0.9737 |
|
88 |
+
| 0.0003 | 23.12 | 1110 | 0.0776 | 0.9737 |
|
89 |
+
| 0.0003 | 23.75 | 1140 | 0.0771 | 0.9737 |
|
90 |
+
| 0.0003 | 24.38 | 1170 | 0.0770 | 0.9737 |
|
91 |
+
| 0.0003 | 25.0 | 1200 | 0.0772 | 0.9737 |
|
92 |
+
| 0.0003 | 25.62 | 1230 | 0.0777 | 0.9737 |
|
93 |
+
| 0.0003 | 26.25 | 1260 | 0.0774 | 0.9737 |
|
94 |
+
| 0.0003 | 26.88 | 1290 | 0.0774 | 0.9737 |
|
95 |
+
| 0.0003 | 27.5 | 1320 | 0.0775 | 0.9737 |
|
96 |
+
| 0.0003 | 28.12 | 1350 | 0.0775 | 0.9737 |
|
97 |
+
| 0.0003 | 28.75 | 1380 | 0.0775 | 0.9737 |
|
98 |
+
| 0.0003 | 29.38 | 1410 | 0.0774 | 0.9737 |
|
99 |
+
| 0.0003 | 30.0 | 1440 | 0.0774 | 0.9737 |
|
100 |
|
101 |
|
102 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 437964800
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2deb861c37be2036f230683ef6ce0548b22d92fb7d2c4a747ee8688bb728e3f7
|
3 |
size 437964800
|
runs/Jan15_10-28-49_e72b419fbc15/events.out.tfevents.1705314534.e72b419fbc15.194.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8e745177ed36aa9bcd0d88d09d47b2f7ba2b3282c2b23d2249f60a61a2f79ab
|
3 |
+
size 27921
|
runs/Jan15_10-57-51_e72b419fbc15/events.out.tfevents.1705316294.e72b419fbc15.194.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2aec3dea1ad7fe76b45d377b30fa3df1d71da4bce6a44ab63d38d86b8bbefe44
|
3 |
+
size 27921
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4728
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a16f6017e8086626e33f350cf2807c8fe26788ab4a9fc3462514157b21ea0abf
|
3 |
size 4728
|