--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: DIALOGUE_overfit_check_fold_4 results: [] --- # DIALOGUE_overfit_check_fold_4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1481 - Precision: 0.9737 - Recall: 0.9773 - F1: 0.9742 - Accuracy: 0.9737 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00024 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4533 | 0.77 | 30 | 0.5054 | 0.9059 | 0.8777 | 0.8782 | 0.8816 | | 0.4715 | 1.54 | 60 | 0.3453 | 0.9618 | 0.9641 | 0.9619 | 0.9605 | | 0.268 | 2.31 | 90 | 0.1294 | 0.9625 | 0.9659 | 0.9614 | 0.9605 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0