Sharpaxis commited on
Commit
3f408e7
·
verified ·
1 Parent(s): 047068c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -0
README.md CHANGED
@@ -76,3 +76,59 @@ The following hyperparameters were used during training:
76
  - Pytorch 2.5.1
77
  - Datasets 3.1.0
78
  - Tokenizers 0.20.3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  - Pytorch 2.5.1
77
  - Datasets 3.1.0
78
  - Tokenizers 0.20.3
79
+ ```python
80
+ import matplotlib.pyplot as plt
81
+ import plotly.graph_objects as go
82
+ from IPython.display import display, HTML
83
+ import numpy as np
84
+ from transformers import pipeline
85
+ %matplotlib inline
86
+
87
+ # Pipelines
88
+ classifier = pipeline("text-classification", model="Sharpaxis/Finance_DistilBERT_sentiment", top_k=None)
89
+ pipe = pipeline("text-classification", model="Sharpaxis/News_classification_distilbert")
90
+
91
+ def finance_text_predictor(text):
92
+ text = str(text)
93
+ out = classifier(text)[0]
94
+ type_news = pipe(text)[0]
95
+
96
+ # Display news type and text in HTML
97
+ if type_news['label'] == 'LABEL_1':
98
+ display(HTML(f"""
99
+ <div style="border: 2px solid red; padding: 10px; margin: 10px; background-color: #ffe6e6; color: black; font-weight: bold;">
100
+ IMPORTANT TECH/FIN News<br>
101
+ <div style="margin-top: 10px; font-weight: normal; font-size: 14px; color: darkred;">{text}</div>
102
+ </div>
103
+ """))
104
+ elif type_news['label'] == 'LABEL_0':
105
+ display(HTML(f"""
106
+ <div style="border: 2px solid green; padding: 10px; margin: 10px; background-color: #e6ffe6; color: black; font-weight: bold;">
107
+ NON IMPORTANT NEWS<br>
108
+ <div style="margin-top: 10px; font-weight: normal; font-size: 14px; color: darkgreen;">{text}</div>
109
+ </div>
110
+ """))
111
+
112
+ # Sentiment analysis scores
113
+ scores = [sample['score'] for sample in out]
114
+ labels = [sample['label'] for sample in out]
115
+ label_map = {'LABEL_0': "Negative", 'LABEL_1': "Neutral", 'LABEL_2': "Positive"}
116
+ sentiments = [label_map[label] for label in labels]
117
+
118
+ print("SCORES")
119
+ for i in range(len(scores)):
120
+ print(f"{sentiments[i]} : {scores[i]:.4f}")
121
+
122
+ print(f"Sentiment of text is {sentiments[np.argmax(scores)]}")
123
+
124
+ # Bar chart for sentiment scores
125
+ fig = go.Figure(
126
+ data=[go.Bar(x=sentiments, y=scores, marker=dict(color=["red", "blue", "green"]), width=0.3)]
127
+ )
128
+ fig.update_layout(
129
+ title="Sentiment Analysis Scores",
130
+ xaxis_title="Sentiments",
131
+ yaxis_title="Scores",
132
+ template="plotly_dark"
133
+ )
134
+ fig.show()