File size: 5,680 Bytes
9bf40bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "import matplotlib.gridspec as gridspec\n",
    "import cv2\n",
    "import os\n",
    "import numpy as np\n",
    "import glob\n",
    "from PIL import Image"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "def random_shearing(img, num, border):\n",
    "    rows = img.shape[0]\n",
    "    cols = img.shape[1]\n",
    "    if num == 0:\n",
    "        pts1 = np.float32([[5,5],[20,5],[2,20]])\n",
    "        pts2 = np.float32([[10,10],[20,5],[5,25]])\n",
    "    elif num == 1:\n",
    "        pts1 = np.float32([[5,5],[15,5],[2,20]])\n",
    "        pts2 = np.float32([[5,10],[10,10],[5,25]])\n",
    "    elif num == 2:\n",
    "        pts1 = np.float32([[5,5],[15,5],[5,20]])\n",
    "        pts2 = np.float32([[5,10],[10,10],[5,25]])\n",
    "    elif num == 3:\n",
    "        pts1 = np.float32([[5,5],[10,5],[2,20]])\n",
    "        pts2 = np.float32([[5,10],[10,10],[5,25]])\n",
    "    elif num == 4:\n",
    "        pts1 = np.float32([[5,5],[10,5],[2,20]])\n",
    "        pts2 = np.float32([[5,10],[10,10],[5,30]])\n",
    "    else:\n",
    "        pts1 = np.float32([[5,5],[10,5],[10,20]])\n",
    "        pts2 = np.float32([[5,10],[10,10],[5,30]])\n",
    "    M = cv2.getAffineTransform(pts1,pts2)\n",
    "    return cv2.warpAffine(img, M, (cols,rows), borderValue=border)\n",
    "\n",
    "def random_rotation(img, degree, border):\n",
    "    rows = img.shape[0]\n",
    "    cols = img.shape[1]\n",
    "    M = cv2.getRotationMatrix2D((cols/2,rows/2),degree,1)\n",
    "    return cv2.warpAffine(img,M,(cols,rows), borderValue=border)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "def transform_image(img, skt, ang_range, shear_range, trans_range):\n",
    "    '''\n",
    "    This function transforms images to generate new images.\n",
    "    The function takes in following arguments,\n",
    "    1- Image\n",
    "    2- ang_range: Range of angles for rotation\n",
    "    3- shear_range: Range of values to apply affine transform to\n",
    "    4- trans_range: Range of values to apply translations over.\n",
    "\n",
    "    A Random uniform distribution is used to generate different parameters for transformation\n",
    "\n",
    "    '''\n",
    "    # Rotation\n",
    "\n",
    "    ang_rot = np.random.uniform(ang_range)-ang_range/2\n",
    "    rows,cols,ch = img.shape    \n",
    "    Rot_M = cv2.getRotationMatrix2D((cols/2,rows/2),ang_rot,1)\n",
    "\n",
    "    # Translation\n",
    "    tr_x = trans_range*np.random.uniform()-trans_range/2\n",
    "    tr_y = trans_range*np.random.uniform()-trans_range/2\n",
    "    Trans_M = np.float32([[1,0,tr_x],[0,1,tr_y]])\n",
    "\n",
    "    # Shear\n",
    "    pts1 = np.float32([[5,5],[20,5],[5,20]])\n",
    "\n",
    "    pt1 = 5+shear_range*np.random.uniform()-shear_range/2\n",
    "    pt2 = 20+shear_range*np.random.uniform()-shear_range/2\n",
    "\n",
    "    pts2 = np.float32([[pt1,5],[pt2,pt1],[5,pt2]])\n",
    "\n",
    "    shear_M = cv2.getAffineTransform(pts1,pts2)\n",
    "\n",
    "    # Border\n",
    "    idx = 0\n",
    "    border_img = tuple([int(img[idx][0][0]), int(img[idx][0][1]), int(img[idx][0][2])])\n",
    "    border_skt = tuple([int(skt[0][0][0]), int(skt[0][0][1]), int(skt[0][0][2])])\n",
    "    \n",
    "    img = cv2.warpAffine(img,Rot_M,(cols,rows), borderValue=border_img)\n",
    "    img = cv2.warpAffine(img,Trans_M,(cols,rows), borderValue=border_img)\n",
    "    img = cv2.warpAffine(img,shear_M,(cols,rows), borderValue=border_img)\n",
    "    \n",
    "    skt = cv2.warpAffine(skt,Rot_M,(cols,rows), borderValue=border_skt)\n",
    "    skt = cv2.warpAffine(skt,Trans_M,(cols,rows), borderValue=border_skt)\n",
    "    skt = cv2.warpAffine(skt,shear_M,(cols,rows), borderValue=border_skt)\n",
    "\n",
    "    return img, skt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "sketch_dir = 'Dataset/Augmented sketch/'\n",
    "photo_dir = 'Dataset/Augmented photo/'\n",
    "\n",
    "if not os.path.exists(sketch_dir):\n",
    "    os.mkdir(sketch_dir)\n",
    "\n",
    "if not os.path.exists(photo_dir):\n",
    "    os.mkdir(photo_dir)\n",
    "\n",
    "p_filenames = glob.glob('Dataset/CUHK/Training photo/*')\n",
    "s_filenames = glob.glob('Dataset/CUHK/Training sketch/*')\n",
    "\n",
    "counter = 0\n",
    "for i in range(len(p_filenames)):\n",
    "    im = cv2.imread(p_filenames[i])\n",
    "    sk = cv2.imread(s_filenames[i])\n",
    "\n",
    "    for j in range(200):\n",
    "        img, skt = transform_image(im, sk, 40, 10, 10)\n",
    "\n",
    "        cv2.imwrite(photo_dir + str(counter) + '.jpg', img)\n",
    "        cv2.imwrite(sketch_dir + str(counter) + '.jpg', skt)\n",
    "\n",
    "        counter += 1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}