File size: 5,580 Bytes
9bf40bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using TensorFlow backend.\n"
]
}
],
"source": [
"from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization\n",
"from keras.preprocessing.image import img_to_array\n",
"from keras.preprocessing.image import load_img\n",
"from keras.models import load_model\n",
"import numpy as np\n",
"import natsort\n",
"import cv2\n",
"import os"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"def load_filename(path):\n",
" dirFiles = os.listdir(path)\n",
" for i, file in enumerate(dirFiles):\n",
" dirFiles[i] = path + file\n",
" return natsort.natsorted(dirFiles ,reverse=False)\n",
"\n",
"# load all images in a directory into memory\n",
"def load_images(list_path, size=(256, 256)):\n",
" img_list = list()\n",
" # enumerate filenames in directory, assume all are images\n",
" for filename in list_path:\n",
" # load and resize the image\n",
" pixels = load_img(filename, target_size=size)\n",
" # convert to numpy array\n",
" pixels = img_to_array(pixels)\n",
" pixels = (pixels - 127.5) / 127.5\n",
" img_list.append(pixels)\n",
" return np.asarray(img_list)\n",
"\n",
"def pred_images(g_model, target_dir, filenames, batch_size=128):\n",
" if not os.path.exists(target_dir):\n",
" os.mkdir(target_dir)\n",
"\n",
" imgs = load_images(filenames)\n",
" g_img = g_model.predict(imgs)\n",
" g_img = g_img * 127.5 + 127.5\n",
" for j, _img in enumerate(g_img):\n",
" cv2.imwrite(target_dir + \"/\" + os.path.basename(filenames[j]), cv2.resize(cv2.cvtColor(_img.astype('uint8'), cv2.COLOR_RGB2BGR), (200, 250)))\n",
" print(\"Image has been successfully saved in \\\"\" + target_dir + \"\\\" folder\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"filenames = load_filename('Dataset/CUHK/Testing sketch/')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\users\\user\\anaconda3\\envs\\tf-gpu-1\\lib\\site-packages\\keras\\engine\\saving.py:341: UserWarning: No training configuration found in save file: the model was *not* compiled. Compile it manually.\n",
" warnings.warn('No training configuration found in save file: '\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"WARNING:tensorflow:From c:\\users\\user\\anaconda3\\envs\\tf-gpu-1\\lib\\site-packages\\keras\\backend\\tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n",
"\n",
"Image has been successfully saved in \"Generated Images/Generated_Pixel[1]_Context[0]\" folder\n"
]
}
],
"source": [
"g_model = load_model('Models/Pixel[1]_Context[0]/g_model.h5',custom_objects={'InstanceNormalization':InstanceNormalization})\n",
"\n",
"pred_images(g_model, \"Generated Images/Generated_Pixel[1]_Context[0]\", filenames)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image has been successfully saved in \"Generated Images/Generated_Pixel[08]_Context[02]\" folder\n"
]
}
],
"source": [
"g_model = load_model('Models/Pixel[08]_Context[02]/g_model.h5',custom_objects={'InstanceNormalization':InstanceNormalization})\n",
"\n",
"pred_images(g_model, \"Generated Images/Generated_Pixel[08]_Context[02]\", filenames)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image has been successfully saved in \"Generated Images/Generated_Pixel[05]_Context[05]\" folder\n"
]
}
],
"source": [
"g_model = load_model('Models/Pixel[05]_Context[05]/g_model.h5',custom_objects={'InstanceNormalization':InstanceNormalization})\n",
"\n",
"pred_images(g_model, \"Generated Images/Generated_Pixel[05]_Context[05]\", filenames)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image has been successfully saved in \"Generated Images/Generated_Pixel[02]_Context[08]\" folder\n"
]
}
],
"source": [
"g_model = load_model('Models/Pixel[02]_Context[08]/g_model.h5',custom_objects={'InstanceNormalization':InstanceNormalization})\n",
"\n",
"pred_images(g_model, \"Generated Images/Generated_Pixel[02]_Context[08]\", filenames)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|