File size: 5,580 Bytes
9bf40bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Using TensorFlow backend.\n"
     ]
    }
   ],
   "source": [
    "from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization\n",
    "from keras.preprocessing.image import img_to_array\n",
    "from keras.preprocessing.image import load_img\n",
    "from keras.models import load_model\n",
    "import numpy as np\n",
    "import natsort\n",
    "import cv2\n",
    "import os"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "def load_filename(path):\n",
    "    dirFiles = os.listdir(path)\n",
    "    for i, file in enumerate(dirFiles):\n",
    "        dirFiles[i] = path + file\n",
    "    return natsort.natsorted(dirFiles ,reverse=False)\n",
    "\n",
    "# load all images in a directory into memory\n",
    "def load_images(list_path, size=(256, 256)):\n",
    "    img_list = list()\n",
    "    # enumerate filenames in directory, assume all are images\n",
    "    for filename in list_path:\n",
    "        # load and resize the image\n",
    "        pixels = load_img(filename, target_size=size)\n",
    "        # convert to numpy array\n",
    "        pixels = img_to_array(pixels)\n",
    "        pixels = (pixels - 127.5) / 127.5\n",
    "        img_list.append(pixels)\n",
    "    return np.asarray(img_list)\n",
    "\n",
    "def pred_images(g_model, target_dir, filenames, batch_size=128):\n",
    "    if not os.path.exists(target_dir):\n",
    "        os.mkdir(target_dir)\n",
    "\n",
    "    imgs = load_images(filenames)\n",
    "    g_img = g_model.predict(imgs)\n",
    "    g_img = g_img * 127.5 + 127.5\n",
    "    for j, _img in enumerate(g_img):\n",
    "        cv2.imwrite(target_dir + \"/\" + os.path.basename(filenames[j]), cv2.resize(cv2.cvtColor(_img.astype('uint8'), cv2.COLOR_RGB2BGR), (200, 250)))\n",
    "    print(\"Image has been successfully saved in \\\"\" + target_dir + \"\\\" folder\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "filenames = load_filename('Dataset/CUHK/Testing sketch/')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "c:\\users\\user\\anaconda3\\envs\\tf-gpu-1\\lib\\site-packages\\keras\\engine\\saving.py:341: UserWarning: No training configuration found in save file: the model was *not* compiled. Compile it manually.\n",
      "  warnings.warn('No training configuration found in save file: '\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "WARNING:tensorflow:From c:\\users\\user\\anaconda3\\envs\\tf-gpu-1\\lib\\site-packages\\keras\\backend\\tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n",
      "\n",
      "Image has been successfully saved in \"Generated Images/Generated_Pixel[1]_Context[0]\" folder\n"
     ]
    }
   ],
   "source": [
    "g_model = load_model('Models/Pixel[1]_Context[0]/g_model.h5',custom_objects={'InstanceNormalization':InstanceNormalization})\n",
    "\n",
    "pred_images(g_model, \"Generated Images/Generated_Pixel[1]_Context[0]\", filenames)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Image has been successfully saved in \"Generated Images/Generated_Pixel[08]_Context[02]\" folder\n"
     ]
    }
   ],
   "source": [
    "g_model = load_model('Models/Pixel[08]_Context[02]/g_model.h5',custom_objects={'InstanceNormalization':InstanceNormalization})\n",
    "\n",
    "pred_images(g_model, \"Generated Images/Generated_Pixel[08]_Context[02]\", filenames)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Image has been successfully saved in \"Generated Images/Generated_Pixel[05]_Context[05]\" folder\n"
     ]
    }
   ],
   "source": [
    "g_model = load_model('Models/Pixel[05]_Context[05]/g_model.h5',custom_objects={'InstanceNormalization':InstanceNormalization})\n",
    "\n",
    "pred_images(g_model, \"Generated Images/Generated_Pixel[05]_Context[05]\", filenames)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Image has been successfully saved in \"Generated Images/Generated_Pixel[02]_Context[08]\" folder\n"
     ]
    }
   ],
   "source": [
    "g_model = load_model('Models/Pixel[02]_Context[08]/g_model.h5',custom_objects={'InstanceNormalization':InstanceNormalization})\n",
    "\n",
    "pred_images(g_model, \"Generated Images/Generated_Pixel[02]_Context[08]\", filenames)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}