Model save
Browse files- 1_Pooling/config.json +2 -2
- README.md +152 -153
- model.safetensors +1 -1
- modules.json +0 -6
- sentence_bert_config.json +1 -1
1_Pooling/config.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"word_embedding_dimension": 768,
|
3 |
-
"pooling_mode_cls_token":
|
4 |
-
"pooling_mode_mean_tokens":
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
"pooling_mode_weightedmean_tokens": false,
|
|
|
1 |
{
|
2 |
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
"pooling_mode_weightedmean_tokens": false,
|
README.md
CHANGED
@@ -10,16 +10,15 @@ tags:
|
|
10 |
- dataset_size:150
|
11 |
- loss:MatryoshkaLoss
|
12 |
- loss:MultipleNegativesRankingLoss
|
13 |
-
base_model:
|
14 |
widget:
|
15 |
- source_sentence: What services does Techchefz Digital offer for AI adoption?
|
16 |
sentences:
|
17 |
-
- '
|
18 |
-
for an always-on world.
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
- "At Techchefz Digital, we specialize in guiding companies through the complexities\
|
24 |
\ of adopting and integrating Artificial Intelligence and Machine Learning technologies.\
|
25 |
\ Our consultancy services are designed to enhance your operational efficiency\
|
@@ -29,12 +28,13 @@ widget:
|
|
29 |
\ \
|
30 |
\ \n DATA INTELLIGENCE PLATFORMS we\
|
31 |
\ specialize in\nTensorFlow\nDatabricks\nTableau\nPytorch\nOpenAI\nPinecone\""
|
32 |
-
- '
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
- source_sentence:
|
38 |
sentences:
|
39 |
- 'How do we do Custom Development ?
|
40 |
|
@@ -105,7 +105,7 @@ widget:
|
|
105 |
\ operations.\nTeam Augmentation\nHelp you scale up and augment your existing\
|
106 |
\ team to solve your hiring challenges with our easy to deploy staff augmentation\
|
107 |
\ offerings.\""
|
108 |
-
- source_sentence:
|
109 |
sentences:
|
110 |
- 'Why do we need Microservices ?
|
111 |
|
@@ -145,22 +145,14 @@ widget:
|
|
145 |
and exponential growth. His leadership has been instrumental in shaping TechChefz
|
146 |
Digital into a leading force in the digital transformation arena, inspiring a
|
147 |
culture of innovation and excellence that continues to propel the company forward.'
|
148 |
-
- '
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
153 |
- source_sentence: What kind of data do you leverage for AI solutions?
|
154 |
sentences:
|
155 |
-
- 'In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions
|
156 |
-
for Complex Problems and delieverd a comprehensive Website Development, Production
|
157 |
-
Support & Managed Services, we optimized customer journeys, integrate analytics,
|
158 |
-
CRM, ERP, and third-party applications, and implement cutting-edge technologies
|
159 |
-
for enhanced performance and efficiency
|
160 |
-
|
161 |
-
and achievied 200% Reduction in operational time & effort managing content & experience,
|
162 |
-
70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion
|
163 |
-
& Retention'
|
164 |
- 'Our Solutions
|
165 |
|
166 |
Strategy & Digital Transformation
|
@@ -175,6 +167,11 @@ widget:
|
|
175 |
Providing product development, enterprise web and mobile development, microservices
|
176 |
integrations, quality engineering, and application support services to drive innovation
|
177 |
and enhance operational efficiency.'
|
|
|
|
|
|
|
|
|
|
|
178 |
- Our AI/ML services pave the way for transformative change across industries, embodying
|
179 |
a client-focused approach that integrates seamlessly with human-centric innovation.
|
180 |
Our collaborative teams are dedicated to fostering growth, leveraging data, and
|
@@ -193,12 +190,6 @@ widget:
|
|
193 |
\ deploy staff augmentation offerings .\nManaged Services\nOperate and monitor\
|
194 |
\ your business-critical applications, data, and IT workloads, along with Application\
|
195 |
\ maintenance and operations\n"
|
196 |
-
- 'What makes your DevOps solutions stand out from the competition?
|
197 |
-
|
198 |
-
Our DevOps solutions stand out due to our personalized approach, extensive expertise,
|
199 |
-
and commitment to innovation. We focus on delivering measurable results, such
|
200 |
-
as reduced deployment times, improved system reliability, and enhanced security,
|
201 |
-
ensuring you get the maximum benefit from our services.'
|
202 |
- 'Introducing the world of General Insurance Firm
|
203 |
|
204 |
In this project, we implemented Digital Solution and Implementation with Headless
|
@@ -222,6 +213,15 @@ widget:
|
|
222 |
& Experience for Buy & renew Journeys,220% Reduction in Customer Drops during
|
223 |
buy and renewal journeys, 300% Reduction in bounce rate on policy landing and
|
224 |
campaign pages'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
pipeline_tag: sentence-similarity
|
226 |
library_name: sentence-transformers
|
227 |
metrics:
|
@@ -251,49 +251,49 @@ model-index:
|
|
251 |
type: dim_768
|
252 |
metrics:
|
253 |
- type: cosine_accuracy@1
|
254 |
-
value: 0.
|
255 |
name: Cosine Accuracy@1
|
256 |
- type: cosine_accuracy@3
|
257 |
-
value: 0.
|
258 |
name: Cosine Accuracy@3
|
259 |
- type: cosine_accuracy@5
|
260 |
-
value: 0.
|
261 |
name: Cosine Accuracy@5
|
262 |
- type: cosine_accuracy@10
|
263 |
-
value: 0.
|
264 |
name: Cosine Accuracy@10
|
265 |
- type: cosine_precision@1
|
266 |
-
value: 0.
|
267 |
name: Cosine Precision@1
|
268 |
- type: cosine_precision@3
|
269 |
-
value: 0.
|
270 |
name: Cosine Precision@3
|
271 |
- type: cosine_precision@5
|
272 |
-
value: 0.
|
273 |
name: Cosine Precision@5
|
274 |
- type: cosine_precision@10
|
275 |
-
value: 0.
|
276 |
name: Cosine Precision@10
|
277 |
- type: cosine_recall@1
|
278 |
-
value: 0.
|
279 |
name: Cosine Recall@1
|
280 |
- type: cosine_recall@3
|
281 |
-
value: 0.
|
282 |
name: Cosine Recall@3
|
283 |
- type: cosine_recall@5
|
284 |
-
value: 0.
|
285 |
name: Cosine Recall@5
|
286 |
- type: cosine_recall@10
|
287 |
-
value: 0.
|
288 |
name: Cosine Recall@10
|
289 |
- type: cosine_ndcg@10
|
290 |
-
value: 0.
|
291 |
name: Cosine Ndcg@10
|
292 |
- type: cosine_mrr@10
|
293 |
-
value: 0.
|
294 |
name: Cosine Mrr@10
|
295 |
- type: cosine_map@100
|
296 |
-
value: 0.
|
297 |
name: Cosine Map@100
|
298 |
- task:
|
299 |
type: information-retrieval
|
@@ -303,49 +303,49 @@ model-index:
|
|
303 |
type: dim_512
|
304 |
metrics:
|
305 |
- type: cosine_accuracy@1
|
306 |
-
value: 0.
|
307 |
name: Cosine Accuracy@1
|
308 |
- type: cosine_accuracy@3
|
309 |
-
value: 0.
|
310 |
name: Cosine Accuracy@3
|
311 |
- type: cosine_accuracy@5
|
312 |
-
value: 0.
|
313 |
name: Cosine Accuracy@5
|
314 |
- type: cosine_accuracy@10
|
315 |
-
value: 0.
|
316 |
name: Cosine Accuracy@10
|
317 |
- type: cosine_precision@1
|
318 |
-
value: 0.
|
319 |
name: Cosine Precision@1
|
320 |
- type: cosine_precision@3
|
321 |
-
value: 0.
|
322 |
name: Cosine Precision@3
|
323 |
- type: cosine_precision@5
|
324 |
-
value: 0.
|
325 |
name: Cosine Precision@5
|
326 |
- type: cosine_precision@10
|
327 |
-
value: 0.
|
328 |
name: Cosine Precision@10
|
329 |
- type: cosine_recall@1
|
330 |
-
value: 0.
|
331 |
name: Cosine Recall@1
|
332 |
- type: cosine_recall@3
|
333 |
-
value: 0.
|
334 |
name: Cosine Recall@3
|
335 |
- type: cosine_recall@5
|
336 |
-
value: 0.
|
337 |
name: Cosine Recall@5
|
338 |
- type: cosine_recall@10
|
339 |
-
value: 0.
|
340 |
name: Cosine Recall@10
|
341 |
- type: cosine_ndcg@10
|
342 |
-
value: 0.
|
343 |
name: Cosine Ndcg@10
|
344 |
- type: cosine_mrr@10
|
345 |
-
value: 0.
|
346 |
name: Cosine Mrr@10
|
347 |
- type: cosine_map@100
|
348 |
-
value: 0.
|
349 |
name: Cosine Map@100
|
350 |
- task:
|
351 |
type: information-retrieval
|
@@ -355,49 +355,49 @@ model-index:
|
|
355 |
type: dim_256
|
356 |
metrics:
|
357 |
- type: cosine_accuracy@1
|
358 |
-
value: 0.
|
359 |
name: Cosine Accuracy@1
|
360 |
- type: cosine_accuracy@3
|
361 |
-
value: 0.
|
362 |
name: Cosine Accuracy@3
|
363 |
- type: cosine_accuracy@5
|
364 |
-
value: 0.
|
365 |
name: Cosine Accuracy@5
|
366 |
- type: cosine_accuracy@10
|
367 |
-
value: 0.
|
368 |
name: Cosine Accuracy@10
|
369 |
- type: cosine_precision@1
|
370 |
-
value: 0.
|
371 |
name: Cosine Precision@1
|
372 |
- type: cosine_precision@3
|
373 |
-
value: 0.
|
374 |
name: Cosine Precision@3
|
375 |
- type: cosine_precision@5
|
376 |
-
value: 0.
|
377 |
name: Cosine Precision@5
|
378 |
- type: cosine_precision@10
|
379 |
-
value: 0.
|
380 |
name: Cosine Precision@10
|
381 |
- type: cosine_recall@1
|
382 |
-
value: 0.
|
383 |
name: Cosine Recall@1
|
384 |
- type: cosine_recall@3
|
385 |
-
value: 0.
|
386 |
name: Cosine Recall@3
|
387 |
- type: cosine_recall@5
|
388 |
-
value: 0.
|
389 |
name: Cosine Recall@5
|
390 |
- type: cosine_recall@10
|
391 |
-
value: 0.
|
392 |
name: Cosine Recall@10
|
393 |
- type: cosine_ndcg@10
|
394 |
-
value: 0.
|
395 |
name: Cosine Ndcg@10
|
396 |
- type: cosine_mrr@10
|
397 |
-
value: 0.
|
398 |
name: Cosine Mrr@10
|
399 |
- type: cosine_map@100
|
400 |
-
value: 0.
|
401 |
name: Cosine Map@100
|
402 |
- task:
|
403 |
type: information-retrieval
|
@@ -407,49 +407,49 @@ model-index:
|
|
407 |
type: dim_128
|
408 |
metrics:
|
409 |
- type: cosine_accuracy@1
|
410 |
-
value: 0.
|
411 |
name: Cosine Accuracy@1
|
412 |
- type: cosine_accuracy@3
|
413 |
-
value: 0.
|
414 |
name: Cosine Accuracy@3
|
415 |
- type: cosine_accuracy@5
|
416 |
-
value: 0.
|
417 |
name: Cosine Accuracy@5
|
418 |
- type: cosine_accuracy@10
|
419 |
-
value: 0.
|
420 |
name: Cosine Accuracy@10
|
421 |
- type: cosine_precision@1
|
422 |
-
value: 0.
|
423 |
name: Cosine Precision@1
|
424 |
- type: cosine_precision@3
|
425 |
-
value: 0.
|
426 |
name: Cosine Precision@3
|
427 |
- type: cosine_precision@5
|
428 |
-
value: 0.
|
429 |
name: Cosine Precision@5
|
430 |
- type: cosine_precision@10
|
431 |
-
value: 0.
|
432 |
name: Cosine Precision@10
|
433 |
- type: cosine_recall@1
|
434 |
-
value: 0.
|
435 |
name: Cosine Recall@1
|
436 |
- type: cosine_recall@3
|
437 |
-
value: 0.
|
438 |
name: Cosine Recall@3
|
439 |
- type: cosine_recall@5
|
440 |
-
value: 0.
|
441 |
name: Cosine Recall@5
|
442 |
- type: cosine_recall@10
|
443 |
-
value: 0.
|
444 |
name: Cosine Recall@10
|
445 |
- type: cosine_ndcg@10
|
446 |
-
value: 0.
|
447 |
name: Cosine Ndcg@10
|
448 |
- type: cosine_mrr@10
|
449 |
-
value: 0.
|
450 |
name: Cosine Mrr@10
|
451 |
- type: cosine_map@100
|
452 |
-
value: 0.
|
453 |
name: Cosine Map@100
|
454 |
- task:
|
455 |
type: information-retrieval
|
@@ -459,61 +459,61 @@ model-index:
|
|
459 |
type: dim_64
|
460 |
metrics:
|
461 |
- type: cosine_accuracy@1
|
462 |
-
value: 0.
|
463 |
name: Cosine Accuracy@1
|
464 |
- type: cosine_accuracy@3
|
465 |
-
value: 0.
|
466 |
name: Cosine Accuracy@3
|
467 |
- type: cosine_accuracy@5
|
468 |
-
value: 0.
|
469 |
name: Cosine Accuracy@5
|
470 |
- type: cosine_accuracy@10
|
471 |
-
value: 0.
|
472 |
name: Cosine Accuracy@10
|
473 |
- type: cosine_precision@1
|
474 |
-
value: 0.
|
475 |
name: Cosine Precision@1
|
476 |
- type: cosine_precision@3
|
477 |
-
value: 0.
|
478 |
name: Cosine Precision@3
|
479 |
- type: cosine_precision@5
|
480 |
-
value: 0.
|
481 |
name: Cosine Precision@5
|
482 |
- type: cosine_precision@10
|
483 |
-
value: 0.
|
484 |
name: Cosine Precision@10
|
485 |
- type: cosine_recall@1
|
486 |
-
value: 0.
|
487 |
name: Cosine Recall@1
|
488 |
- type: cosine_recall@3
|
489 |
-
value: 0.
|
490 |
name: Cosine Recall@3
|
491 |
- type: cosine_recall@5
|
492 |
-
value: 0.
|
493 |
name: Cosine Recall@5
|
494 |
- type: cosine_recall@10
|
495 |
-
value: 0.
|
496 |
name: Cosine Recall@10
|
497 |
- type: cosine_ndcg@10
|
498 |
-
value: 0.
|
499 |
name: Cosine Ndcg@10
|
500 |
- type: cosine_mrr@10
|
501 |
-
value: 0.
|
502 |
name: Cosine Mrr@10
|
503 |
- type: cosine_map@100
|
504 |
-
value: 0.
|
505 |
name: Cosine Map@100
|
506 |
---
|
507 |
|
508 |
# BGE base Financial Matryoshka
|
509 |
|
510 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [
|
511 |
|
512 |
## Model Details
|
513 |
|
514 |
### Model Description
|
515 |
- **Model Type:** Sentence Transformer
|
516 |
-
- **Base model:** [
|
517 |
- **Maximum Sequence Length:** 512 tokens
|
518 |
- **Output Dimensionality:** 768 dimensions
|
519 |
- **Similarity Function:** Cosine Similarity
|
@@ -531,9 +531,8 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [B
|
|
531 |
|
532 |
```
|
533 |
SentenceTransformer(
|
534 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case':
|
535 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token':
|
536 |
-
(2): Normalize()
|
537 |
)
|
538 |
```
|
539 |
|
@@ -552,12 +551,12 @@ Then you can load this model and run inference.
|
|
552 |
from sentence_transformers import SentenceTransformer
|
553 |
|
554 |
# Download from the 🤗 Hub
|
555 |
-
model = SentenceTransformer("Shashwat13333/
|
556 |
# Run inference
|
557 |
sentences = [
|
558 |
'What managed services does TechChefz provide ?',
|
559 |
' What we do\n\nDigital Strategy\nCreating digital frameworks that transform your digital enterprise and produce a return on investment.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations.\n\nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings .\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations\n',
|
560 |
-
'Introducing the world of
|
561 |
]
|
562 |
embeddings = model.encode(sentences)
|
563 |
print(embeddings.shape)
|
@@ -602,23 +601,23 @@ You can finetune this model on your own dataset.
|
|
602 |
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
|
603 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
604 |
|
605 |
-
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64
|
606 |
-
|
607 |
-
| cosine_accuracy@1 | 0.
|
608 |
-
| cosine_accuracy@3 | 0.
|
609 |
-
| cosine_accuracy@5 | 0.
|
610 |
-
| cosine_accuracy@10 | 0.
|
611 |
-
| cosine_precision@1 | 0.
|
612 |
-
| cosine_precision@3 | 0.
|
613 |
-
| cosine_precision@5 | 0.
|
614 |
-
| cosine_precision@10 | 0.
|
615 |
-
| cosine_recall@1 | 0.
|
616 |
-
| cosine_recall@3 | 0.
|
617 |
-
| cosine_recall@5 | 0.
|
618 |
-
| cosine_recall@10 | 0.
|
619 |
-
| **cosine_ndcg@10** | **0.
|
620 |
-
| cosine_mrr@10 | 0.
|
621 |
-
| cosine_map@100 | 0.
|
622 |
|
623 |
<!--
|
624 |
## Bias, Risks and Limitations
|
@@ -642,16 +641,16 @@ You can finetune this model on your own dataset.
|
|
642 |
* Size: 150 training samples
|
643 |
* Columns: <code>anchor</code> and <code>positive</code>
|
644 |
* Approximate statistics based on the first 150 samples:
|
645 |
-
| | anchor
|
646 |
-
|
647 |
-
| type | string
|
648 |
-
| details | <ul><li>min: 7 tokens</li><li>mean: 12.
|
649 |
* Samples:
|
650 |
-
| anchor
|
651 |
-
|
652 |
-
| <code>
|
653 |
-
| <code>
|
654 |
-
| <code>How can your recommendation engines improve our business?</code>
|
655 |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
656 |
```json
|
657 |
{
|
@@ -688,8 +687,8 @@ You can finetune this model on your own dataset.
|
|
688 |
- `load_best_model_at_end`: True
|
689 |
- `optim`: adamw_torch_fused
|
690 |
- `push_to_hub`: True
|
691 |
-
- `hub_model_id`: Shashwat13333/
|
692 |
-
- `push_to_hub_model_id`:
|
693 |
- `batch_sampler`: no_duplicates
|
694 |
|
695 |
#### All Hyperparameters
|
@@ -775,7 +774,7 @@ You can finetune this model on your own dataset.
|
|
775 |
- `use_legacy_prediction_loop`: False
|
776 |
- `push_to_hub`: True
|
777 |
- `resume_from_checkpoint`: None
|
778 |
-
- `hub_model_id`: Shashwat13333/
|
779 |
- `hub_strategy`: every_save
|
780 |
- `hub_private_repo`: None
|
781 |
- `hub_always_push`: False
|
@@ -785,7 +784,7 @@ You can finetune this model on your own dataset.
|
|
785 |
- `include_for_metrics`: []
|
786 |
- `eval_do_concat_batches`: True
|
787 |
- `fp16_backend`: auto
|
788 |
-
- `push_to_hub_model_id`:
|
789 |
- `push_to_hub_organization`: None
|
790 |
- `mp_parameters`:
|
791 |
- `auto_find_batch_size`: False
|
@@ -814,16 +813,16 @@ You can finetune this model on your own dataset.
|
|
814 |
</details>
|
815 |
|
816 |
### Training Logs
|
817 |
-
| Epoch | Step
|
818 |
-
|
819 |
-
| 0.2105 | 1
|
820 |
-
| 0.8421
|
821 |
-
| 1.2105 | 5
|
822 |
-
| 1.8421 | 8
|
823 |
-
| 2.4211 | 10
|
824 |
-
| 2.8421 | 12
|
825 |
-
| 3.6316 | 15
|
826 |
-
|
|
827 |
|
828 |
* The bold row denotes the saved checkpoint.
|
829 |
|
|
|
10 |
- dataset_size:150
|
11 |
- loss:MatryoshkaLoss
|
12 |
- loss:MultipleNegativesRankingLoss
|
13 |
+
base_model: sentence-transformers/msmarco-distilbert-base-v4
|
14 |
widget:
|
15 |
- source_sentence: What services does Techchefz Digital offer for AI adoption?
|
16 |
sentences:
|
17 |
+
- 'How can we get started with your DevOps solutions?
|
|
|
18 |
|
19 |
+
Getting started is easy. Contact us through our website. We''ll schedule a consultation
|
20 |
+
to discuss your needs, evaluate your current infrastructure, and propose a customized
|
21 |
+
DevOps solution designed to achieve your goals.'
|
22 |
- "At Techchefz Digital, we specialize in guiding companies through the complexities\
|
23 |
\ of adopting and integrating Artificial Intelligence and Machine Learning technologies.\
|
24 |
\ Our consultancy services are designed to enhance your operational efficiency\
|
|
|
28 |
\ \
|
29 |
\ \n DATA INTELLIGENCE PLATFORMS we\
|
30 |
\ specialize in\nTensorFlow\nDatabricks\nTableau\nPytorch\nOpenAI\nPinecone\""
|
31 |
+
- 'We are a New breed of innovative digital transformation agency, redefining storytelling
|
32 |
+
for an always-on world.
|
33 |
|
34 |
+
With roots dating back to 2017, we started as a pocket size team of enthusiasts
|
35 |
+
with a goal of helping traditional businesses transform and create dynamic, digital
|
36 |
+
cultures through disruptive strategies and agile deployment of innovative solutions.'
|
37 |
+
- source_sentence: Do you provide support 24/7?
|
38 |
sentences:
|
39 |
- 'How do we do Custom Development ?
|
40 |
|
|
|
105 |
\ operations.\nTeam Augmentation\nHelp you scale up and augment your existing\
|
106 |
\ team to solve your hiring challenges with our easy to deploy staff augmentation\
|
107 |
\ offerings.\""
|
108 |
+
- source_sentence: What challenges did the company face in its early days?
|
109 |
sentences:
|
110 |
- 'Why do we need Microservices ?
|
111 |
|
|
|
145 |
and exponential growth. His leadership has been instrumental in shaping TechChefz
|
146 |
Digital into a leading force in the digital transformation arena, inspiring a
|
147 |
culture of innovation and excellence that continues to propel the company forward.'
|
148 |
+
- 'What makes your DevOps solutions stand out from the competition?
|
149 |
|
150 |
+
Our DevOps solutions stand out due to our personalized approach, extensive expertise,
|
151 |
+
and commitment to innovation. We focus on delivering measurable results, such
|
152 |
+
as reduced deployment times, improved system reliability, and enhanced security,
|
153 |
+
ensuring you get the maximum benefit from our services.'
|
154 |
- source_sentence: What kind of data do you leverage for AI solutions?
|
155 |
sentences:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
- 'Our Solutions
|
157 |
|
158 |
Strategy & Digital Transformation
|
|
|
167 |
Providing product development, enterprise web and mobile development, microservices
|
168 |
integrations, quality engineering, and application support services to drive innovation
|
169 |
and enhance operational efficiency.'
|
170 |
+
- 'In what ways can machine learning optimize our operations?
|
171 |
+
|
172 |
+
Machine learning algorithms can analyze operational data to identify inefficiencies,
|
173 |
+
predict maintenance needs, optimize supply chains, and automate repetitive tasks,
|
174 |
+
significantly improving operational efficiency and reducing costs.'
|
175 |
- Our AI/ML services pave the way for transformative change across industries, embodying
|
176 |
a client-focused approach that integrates seamlessly with human-centric innovation.
|
177 |
Our collaborative teams are dedicated to fostering growth, leveraging data, and
|
|
|
190 |
\ deploy staff augmentation offerings .\nManaged Services\nOperate and monitor\
|
191 |
\ your business-critical applications, data, and IT workloads, along with Application\
|
192 |
\ maintenance and operations\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
- 'Introducing the world of General Insurance Firm
|
194 |
|
195 |
In this project, we implemented Digital Solution and Implementation with Headless
|
|
|
213 |
& Experience for Buy & renew Journeys,220% Reduction in Customer Drops during
|
214 |
buy and renewal journeys, 300% Reduction in bounce rate on policy landing and
|
215 |
campaign pages'
|
216 |
+
- 'In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions
|
217 |
+
for Complex Problems and delieverd a comprehensive Website Development, Production
|
218 |
+
Support & Managed Services, we optimized customer journeys, integrate analytics,
|
219 |
+
CRM, ERP, and third-party applications, and implement cutting-edge technologies
|
220 |
+
for enhanced performance and efficiency
|
221 |
+
|
222 |
+
and achievied 200% Reduction in operational time & effort managing content & experience,
|
223 |
+
70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion
|
224 |
+
& Retention'
|
225 |
pipeline_tag: sentence-similarity
|
226 |
library_name: sentence-transformers
|
227 |
metrics:
|
|
|
251 |
type: dim_768
|
252 |
metrics:
|
253 |
- type: cosine_accuracy@1
|
254 |
+
value: 0.10666666666666667
|
255 |
name: Cosine Accuracy@1
|
256 |
- type: cosine_accuracy@3
|
257 |
+
value: 0.49333333333333335
|
258 |
name: Cosine Accuracy@3
|
259 |
- type: cosine_accuracy@5
|
260 |
+
value: 0.5333333333333333
|
261 |
name: Cosine Accuracy@5
|
262 |
- type: cosine_accuracy@10
|
263 |
+
value: 0.6266666666666667
|
264 |
name: Cosine Accuracy@10
|
265 |
- type: cosine_precision@1
|
266 |
+
value: 0.10666666666666667
|
267 |
name: Cosine Precision@1
|
268 |
- type: cosine_precision@3
|
269 |
+
value: 0.16444444444444445
|
270 |
name: Cosine Precision@3
|
271 |
- type: cosine_precision@5
|
272 |
+
value: 0.10666666666666667
|
273 |
name: Cosine Precision@5
|
274 |
- type: cosine_precision@10
|
275 |
+
value: 0.06266666666666666
|
276 |
name: Cosine Precision@10
|
277 |
- type: cosine_recall@1
|
278 |
+
value: 0.10666666666666667
|
279 |
name: Cosine Recall@1
|
280 |
- type: cosine_recall@3
|
281 |
+
value: 0.49333333333333335
|
282 |
name: Cosine Recall@3
|
283 |
- type: cosine_recall@5
|
284 |
+
value: 0.5333333333333333
|
285 |
name: Cosine Recall@5
|
286 |
- type: cosine_recall@10
|
287 |
+
value: 0.6266666666666667
|
288 |
name: Cosine Recall@10
|
289 |
- type: cosine_ndcg@10
|
290 |
+
value: 0.3696947495406473
|
291 |
name: Cosine Ndcg@10
|
292 |
- type: cosine_mrr@10
|
293 |
+
value: 0.2864550264550264
|
294 |
name: Cosine Mrr@10
|
295 |
- type: cosine_map@100
|
296 |
+
value: 0.2993424751990436
|
297 |
name: Cosine Map@100
|
298 |
- task:
|
299 |
type: information-retrieval
|
|
|
303 |
type: dim_512
|
304 |
metrics:
|
305 |
- type: cosine_accuracy@1
|
306 |
+
value: 0.10666666666666667
|
307 |
name: Cosine Accuracy@1
|
308 |
- type: cosine_accuracy@3
|
309 |
+
value: 0.4666666666666667
|
310 |
name: Cosine Accuracy@3
|
311 |
- type: cosine_accuracy@5
|
312 |
+
value: 0.5333333333333333
|
313 |
name: Cosine Accuracy@5
|
314 |
- type: cosine_accuracy@10
|
315 |
+
value: 0.6133333333333333
|
316 |
name: Cosine Accuracy@10
|
317 |
- type: cosine_precision@1
|
318 |
+
value: 0.10666666666666667
|
319 |
name: Cosine Precision@1
|
320 |
- type: cosine_precision@3
|
321 |
+
value: 0.15555555555555556
|
322 |
name: Cosine Precision@3
|
323 |
- type: cosine_precision@5
|
324 |
+
value: 0.10666666666666667
|
325 |
name: Cosine Precision@5
|
326 |
- type: cosine_precision@10
|
327 |
+
value: 0.06133333333333333
|
328 |
name: Cosine Precision@10
|
329 |
- type: cosine_recall@1
|
330 |
+
value: 0.10666666666666667
|
331 |
name: Cosine Recall@1
|
332 |
- type: cosine_recall@3
|
333 |
+
value: 0.4666666666666667
|
334 |
name: Cosine Recall@3
|
335 |
- type: cosine_recall@5
|
336 |
+
value: 0.5333333333333333
|
337 |
name: Cosine Recall@5
|
338 |
- type: cosine_recall@10
|
339 |
+
value: 0.6133333333333333
|
340 |
name: Cosine Recall@10
|
341 |
- type: cosine_ndcg@10
|
342 |
+
value: 0.3702942720383175
|
343 |
name: Cosine Ndcg@10
|
344 |
- type: cosine_mrr@10
|
345 |
+
value: 0.29092063492063486
|
346 |
name: Cosine Mrr@10
|
347 |
- type: cosine_map@100
|
348 |
+
value: 0.3047495006876888
|
349 |
name: Cosine Map@100
|
350 |
- task:
|
351 |
type: information-retrieval
|
|
|
355 |
type: dim_256
|
356 |
metrics:
|
357 |
- type: cosine_accuracy@1
|
358 |
+
value: 0.14666666666666667
|
359 |
name: Cosine Accuracy@1
|
360 |
- type: cosine_accuracy@3
|
361 |
+
value: 0.4533333333333333
|
362 |
name: Cosine Accuracy@3
|
363 |
- type: cosine_accuracy@5
|
364 |
+
value: 0.49333333333333335
|
365 |
name: Cosine Accuracy@5
|
366 |
- type: cosine_accuracy@10
|
367 |
+
value: 0.6
|
368 |
name: Cosine Accuracy@10
|
369 |
- type: cosine_precision@1
|
370 |
+
value: 0.14666666666666667
|
371 |
name: Cosine Precision@1
|
372 |
- type: cosine_precision@3
|
373 |
+
value: 0.1511111111111111
|
374 |
name: Cosine Precision@3
|
375 |
- type: cosine_precision@5
|
376 |
+
value: 0.09866666666666667
|
377 |
name: Cosine Precision@5
|
378 |
- type: cosine_precision@10
|
379 |
+
value: 0.06
|
380 |
name: Cosine Precision@10
|
381 |
- type: cosine_recall@1
|
382 |
+
value: 0.14666666666666667
|
383 |
name: Cosine Recall@1
|
384 |
- type: cosine_recall@3
|
385 |
+
value: 0.4533333333333333
|
386 |
name: Cosine Recall@3
|
387 |
- type: cosine_recall@5
|
388 |
+
value: 0.49333333333333335
|
389 |
name: Cosine Recall@5
|
390 |
- type: cosine_recall@10
|
391 |
+
value: 0.6
|
392 |
name: Cosine Recall@10
|
393 |
- type: cosine_ndcg@10
|
394 |
+
value: 0.37318151343456746
|
395 |
name: Cosine Ndcg@10
|
396 |
- type: cosine_mrr@10
|
397 |
+
value: 0.3006455026455026
|
398 |
name: Cosine Mrr@10
|
399 |
- type: cosine_map@100
|
400 |
+
value: 0.31352550381063704
|
401 |
name: Cosine Map@100
|
402 |
- task:
|
403 |
type: information-retrieval
|
|
|
407 |
type: dim_128
|
408 |
metrics:
|
409 |
- type: cosine_accuracy@1
|
410 |
+
value: 0.12
|
411 |
name: Cosine Accuracy@1
|
412 |
- type: cosine_accuracy@3
|
413 |
+
value: 0.4533333333333333
|
414 |
name: Cosine Accuracy@3
|
415 |
- type: cosine_accuracy@5
|
416 |
+
value: 0.49333333333333335
|
417 |
name: Cosine Accuracy@5
|
418 |
- type: cosine_accuracy@10
|
419 |
+
value: 0.6
|
420 |
name: Cosine Accuracy@10
|
421 |
- type: cosine_precision@1
|
422 |
+
value: 0.12
|
423 |
name: Cosine Precision@1
|
424 |
- type: cosine_precision@3
|
425 |
+
value: 0.1511111111111111
|
426 |
name: Cosine Precision@3
|
427 |
- type: cosine_precision@5
|
428 |
+
value: 0.09866666666666667
|
429 |
name: Cosine Precision@5
|
430 |
- type: cosine_precision@10
|
431 |
+
value: 0.06
|
432 |
name: Cosine Precision@10
|
433 |
- type: cosine_recall@1
|
434 |
+
value: 0.12
|
435 |
name: Cosine Recall@1
|
436 |
- type: cosine_recall@3
|
437 |
+
value: 0.4533333333333333
|
438 |
name: Cosine Recall@3
|
439 |
- type: cosine_recall@5
|
440 |
+
value: 0.49333333333333335
|
441 |
name: Cosine Recall@5
|
442 |
- type: cosine_recall@10
|
443 |
+
value: 0.6
|
444 |
name: Cosine Recall@10
|
445 |
- type: cosine_ndcg@10
|
446 |
+
value: 0.349467831727335
|
447 |
name: Cosine Ndcg@10
|
448 |
- type: cosine_mrr@10
|
449 |
+
value: 0.26956613756613756
|
450 |
name: Cosine Mrr@10
|
451 |
- type: cosine_map@100
|
452 |
+
value: 0.2814743968696581
|
453 |
name: Cosine Map@100
|
454 |
- task:
|
455 |
type: information-retrieval
|
|
|
459 |
type: dim_64
|
460 |
metrics:
|
461 |
- type: cosine_accuracy@1
|
462 |
+
value: 0.16
|
463 |
name: Cosine Accuracy@1
|
464 |
- type: cosine_accuracy@3
|
465 |
+
value: 0.38666666666666666
|
466 |
name: Cosine Accuracy@3
|
467 |
- type: cosine_accuracy@5
|
468 |
+
value: 0.4666666666666667
|
469 |
name: Cosine Accuracy@5
|
470 |
- type: cosine_accuracy@10
|
471 |
+
value: 0.5466666666666666
|
472 |
name: Cosine Accuracy@10
|
473 |
- type: cosine_precision@1
|
474 |
+
value: 0.16
|
475 |
name: Cosine Precision@1
|
476 |
- type: cosine_precision@3
|
477 |
+
value: 0.1288888888888889
|
478 |
name: Cosine Precision@3
|
479 |
- type: cosine_precision@5
|
480 |
+
value: 0.09333333333333335
|
481 |
name: Cosine Precision@5
|
482 |
- type: cosine_precision@10
|
483 |
+
value: 0.05466666666666666
|
484 |
name: Cosine Precision@10
|
485 |
- type: cosine_recall@1
|
486 |
+
value: 0.16
|
487 |
name: Cosine Recall@1
|
488 |
- type: cosine_recall@3
|
489 |
+
value: 0.38666666666666666
|
490 |
name: Cosine Recall@3
|
491 |
- type: cosine_recall@5
|
492 |
+
value: 0.4666666666666667
|
493 |
name: Cosine Recall@5
|
494 |
- type: cosine_recall@10
|
495 |
+
value: 0.5466666666666666
|
496 |
name: Cosine Recall@10
|
497 |
- type: cosine_ndcg@10
|
498 |
+
value: 0.34485137335598726
|
499 |
name: Cosine Ndcg@10
|
500 |
- type: cosine_mrr@10
|
501 |
+
value: 0.28099999999999997
|
502 |
name: Cosine Mrr@10
|
503 |
- type: cosine_map@100
|
504 |
+
value: 0.29532589563098727
|
505 |
name: Cosine Map@100
|
506 |
---
|
507 |
|
508 |
# BGE base Financial Matryoshka
|
509 |
|
510 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/msmarco-distilbert-base-v4](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v4). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
511 |
|
512 |
## Model Details
|
513 |
|
514 |
### Model Description
|
515 |
- **Model Type:** Sentence Transformer
|
516 |
+
- **Base model:** [sentence-transformers/msmarco-distilbert-base-v4](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v4) <!-- at revision 19f0f4c73dc418bad0e0fc600611e808b7448a28 -->
|
517 |
- **Maximum Sequence Length:** 512 tokens
|
518 |
- **Output Dimensionality:** 768 dimensions
|
519 |
- **Similarity Function:** Cosine Similarity
|
|
|
531 |
|
532 |
```
|
533 |
SentenceTransformer(
|
534 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
|
535 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
|
536 |
)
|
537 |
```
|
538 |
|
|
|
551 |
from sentence_transformers import SentenceTransformer
|
552 |
|
553 |
# Download from the 🤗 Hub
|
554 |
+
model = SentenceTransformer("Shashwat13333/msmarco-distilbert-base-v4")
|
555 |
# Run inference
|
556 |
sentences = [
|
557 |
'What managed services does TechChefz provide ?',
|
558 |
' What we do\n\nDigital Strategy\nCreating digital frameworks that transform your digital enterprise and produce a return on investment.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations.\n\nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings .\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations\n',
|
559 |
+
'In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions for Complex Problems and delieverd a comprehensive Website Development, Production Support & Managed Services, we optimized customer journeys, integrate analytics, CRM, ERP, and third-party applications, and implement cutting-edge technologies for enhanced performance and efficiency\nand achievied 200% Reduction in operational time & effort managing content & experience, 70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion & Retention',
|
560 |
]
|
561 |
embeddings = model.encode(sentences)
|
562 |
print(embeddings.shape)
|
|
|
601 |
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
|
602 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
603 |
|
604 |
+
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|
605 |
+
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
|
606 |
+
| cosine_accuracy@1 | 0.1067 | 0.1067 | 0.1467 | 0.12 | 0.16 |
|
607 |
+
| cosine_accuracy@3 | 0.4933 | 0.4667 | 0.4533 | 0.4533 | 0.3867 |
|
608 |
+
| cosine_accuracy@5 | 0.5333 | 0.5333 | 0.4933 | 0.4933 | 0.4667 |
|
609 |
+
| cosine_accuracy@10 | 0.6267 | 0.6133 | 0.6 | 0.6 | 0.5467 |
|
610 |
+
| cosine_precision@1 | 0.1067 | 0.1067 | 0.1467 | 0.12 | 0.16 |
|
611 |
+
| cosine_precision@3 | 0.1644 | 0.1556 | 0.1511 | 0.1511 | 0.1289 |
|
612 |
+
| cosine_precision@5 | 0.1067 | 0.1067 | 0.0987 | 0.0987 | 0.0933 |
|
613 |
+
| cosine_precision@10 | 0.0627 | 0.0613 | 0.06 | 0.06 | 0.0547 |
|
614 |
+
| cosine_recall@1 | 0.1067 | 0.1067 | 0.1467 | 0.12 | 0.16 |
|
615 |
+
| cosine_recall@3 | 0.4933 | 0.4667 | 0.4533 | 0.4533 | 0.3867 |
|
616 |
+
| cosine_recall@5 | 0.5333 | 0.5333 | 0.4933 | 0.4933 | 0.4667 |
|
617 |
+
| cosine_recall@10 | 0.6267 | 0.6133 | 0.6 | 0.6 | 0.5467 |
|
618 |
+
| **cosine_ndcg@10** | **0.3697** | **0.3703** | **0.3732** | **0.3495** | **0.3449** |
|
619 |
+
| cosine_mrr@10 | 0.2865 | 0.2909 | 0.3006 | 0.2696 | 0.281 |
|
620 |
+
| cosine_map@100 | 0.2993 | 0.3047 | 0.3135 | 0.2815 | 0.2953 |
|
621 |
|
622 |
<!--
|
623 |
## Bias, Risks and Limitations
|
|
|
641 |
* Size: 150 training samples
|
642 |
* Columns: <code>anchor</code> and <code>positive</code>
|
643 |
* Approximate statistics based on the first 150 samples:
|
644 |
+
| | anchor | positive |
|
645 |
+
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
|
646 |
+
| type | string | string |
|
647 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 12.45 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 126.17 tokens</li><li>max: 378 tokens</li></ul> |
|
648 |
* Samples:
|
649 |
+
| anchor | positive |
|
650 |
+
|:----------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
651 |
+
| <code>How can digital transformation enhance customer interactions across multiple channels?</code> | <code>We offer custom software development, digital marketing strategies, and tailored solutions to drive tangible results for your business. Our expert team combines technical prowess with industry insights to propel your business forward in the digital landscape.<br><br>"Engage, analyze & target your customers<br>Digital transformation enables you to interact with customers across multiple channels, providing personalized experiences. This could include social media engagement, interactive websites, and mobile apps." "Empower your employees & partners<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Optimize & automate your operations<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Transform your products<br>The push for digi...</code> |
|
652 |
+
| <code>How does a CRM system improve customer retention?</code> | <code>Our MarTech capabilities<br><br>Personalization<br>Involves tailoring marketing messages and experiences to individual customers. It enhances customer engagement, loyalty, and ultimately, conversion rates.<br><br>Marketing Automation<br>Marketing automation streamlines repetitive tasks such as email marketing, lead nurturing, and social media posting. It improves efficiency, saves time, and ensures timely communication with customers.<br><br>Customer Relationship Management<br>CRM systems help manage interactions with current and potential customers. They store customer data, track interactions, and facilitate communication, improving customer retention.</code> |
|
653 |
+
| <code>How can your recommendation engines improve our business?</code> | <code>How can your recommendation engines improve our business?<br>Our recommendation engines are designed to analyze customer behavior and preferences to deliver personalized suggestions, enhancing user experience, increasing sales, and boosting customer retention.</code> |
|
654 |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
655 |
```json
|
656 |
{
|
|
|
687 |
- `load_best_model_at_end`: True
|
688 |
- `optim`: adamw_torch_fused
|
689 |
- `push_to_hub`: True
|
690 |
+
- `hub_model_id`: Shashwat13333/msmarco-distilbert-base-v4
|
691 |
+
- `push_to_hub_model_id`: msmarco-distilbert-base-v4
|
692 |
- `batch_sampler`: no_duplicates
|
693 |
|
694 |
#### All Hyperparameters
|
|
|
774 |
- `use_legacy_prediction_loop`: False
|
775 |
- `push_to_hub`: True
|
776 |
- `resume_from_checkpoint`: None
|
777 |
+
- `hub_model_id`: Shashwat13333/msmarco-distilbert-base-v4
|
778 |
- `hub_strategy`: every_save
|
779 |
- `hub_private_repo`: None
|
780 |
- `hub_always_push`: False
|
|
|
784 |
- `include_for_metrics`: []
|
785 |
- `eval_do_concat_batches`: True
|
786 |
- `fp16_backend`: auto
|
787 |
+
- `push_to_hub_model_id`: msmarco-distilbert-base-v4
|
788 |
- `push_to_hub_organization`: None
|
789 |
- `mp_parameters`:
|
790 |
- `auto_find_batch_size`: False
|
|
|
813 |
</details>
|
814 |
|
815 |
### Training Logs
|
816 |
+
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|
817 |
+
|:----------:|:-----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
|
818 |
+
| 0.2105 | 1 | 3.5757 | - | - | - | - | - |
|
819 |
+
| **0.8421** | **4** | **-** | **0.3563** | **0.3543** | **0.3378** | **0.3681** | **0.3077** |
|
820 |
+
| 1.2105 | 5 | 4.4031 | - | - | - | - | - |
|
821 |
+
| 1.8421 | 8 | - | 0.3652 | 0.3547 | 0.3574 | 0.3542 | 0.3579 |
|
822 |
+
| 2.4211 | 10 | 3.3423 | - | - | - | - | - |
|
823 |
+
| 2.8421 | 12 | - | 0.3783 | 0.3680 | 0.3558 | 0.3807 | 0.3408 |
|
824 |
+
| 3.6316 | 15 | 2.3695 | - | - | - | - | - |
|
825 |
+
| 3.8421 | 16 | - | 0.3697 | 0.3703 | 0.3732 | 0.3495 | 0.3449 |
|
826 |
|
827 |
* The bold row denotes the saved checkpoint.
|
828 |
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 265462608
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d91a104071bb5ba669e148ddb4754936ef42ce0974dd548e4bb32e07b965495
|
3 |
size 265462608
|
modules.json
CHANGED
@@ -10,11 +10,5 @@
|
|
10 |
"name": "1",
|
11 |
"path": "1_Pooling",
|
12 |
"type": "sentence_transformers.models.Pooling"
|
13 |
-
},
|
14 |
-
{
|
15 |
-
"idx": 2,
|
16 |
-
"name": "2",
|
17 |
-
"path": "2_Normalize",
|
18 |
-
"type": "sentence_transformers.models.Normalize"
|
19 |
}
|
20 |
]
|
|
|
10 |
"name": "1",
|
11 |
"path": "1_Pooling",
|
12 |
"type": "sentence_transformers.models.Pooling"
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
}
|
14 |
]
|
sentence_bert_config.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
{
|
2 |
"max_seq_length": 512,
|
3 |
-
"do_lower_case":
|
4 |
}
|
|
|
1 |
{
|
2 |
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
}
|