Shashwat13333 commited on
Commit
7b97a55
·
verified ·
1 Parent(s): 1a73d6d

Model save

Browse files
1_Pooling/config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "word_embedding_dimension": 768,
3
- "pooling_mode_cls_token": true,
4
- "pooling_mode_mean_tokens": false,
5
  "pooling_mode_max_tokens": false,
6
  "pooling_mode_mean_sqrt_len_tokens": false,
7
  "pooling_mode_weightedmean_tokens": false,
 
1
  {
2
  "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
6
  "pooling_mode_mean_sqrt_len_tokens": false,
7
  "pooling_mode_weightedmean_tokens": false,
README.md CHANGED
@@ -10,16 +10,15 @@ tags:
10
  - dataset_size:150
11
  - loss:MatryoshkaLoss
12
  - loss:MultipleNegativesRankingLoss
13
- base_model: BAAI/bge-base-en-v1.5
14
  widget:
15
  - source_sentence: What services does Techchefz Digital offer for AI adoption?
16
  sentences:
17
- - 'We are a New breed of innovative digital transformation agency, redefining storytelling
18
- for an always-on world.
19
 
20
- With roots dating back to 2017, we started as a pocket size team of enthusiasts
21
- with a goal of helping traditional businesses transform and create dynamic, digital
22
- cultures through disruptive strategies and agile deployment of innovative solutions.'
23
  - "At Techchefz Digital, we specialize in guiding companies through the complexities\
24
  \ of adopting and integrating Artificial Intelligence and Machine Learning technologies.\
25
  \ Our consultancy services are designed to enhance your operational efficiency\
@@ -29,12 +28,13 @@ widget:
29
  \ \
30
  \ \n DATA INTELLIGENCE PLATFORMS we\
31
  \ specialize in\nTensorFlow\nDatabricks\nTableau\nPytorch\nOpenAI\nPinecone\""
32
- - 'How can we get started with your DevOps solutions?
 
33
 
34
- Getting started is easy. Contact us through our website. We''ll schedule a consultation
35
- to discuss your needs, evaluate your current infrastructure, and propose a customized
36
- DevOps solution designed to achieve your goals.'
37
- - source_sentence: Hav you made any services for schools and students?
38
  sentences:
39
  - 'How do we do Custom Development ?
40
 
@@ -105,7 +105,7 @@ widget:
105
  \ operations.\nTeam Augmentation\nHelp you scale up and augment your existing\
106
  \ team to solve your hiring challenges with our easy to deploy staff augmentation\
107
  \ offerings.\""
108
- - source_sentence: How did TechChefz evolve from its early days?
109
  sentences:
110
  - 'Why do we need Microservices ?
111
 
@@ -145,22 +145,14 @@ widget:
145
  and exponential growth. His leadership has been instrumental in shaping TechChefz
146
  Digital into a leading force in the digital transformation arena, inspiring a
147
  culture of innovation and excellence that continues to propel the company forward.'
148
- - 'In what ways can machine learning optimize our operations?
149
 
150
- Machine learning algorithms can analyze operational data to identify inefficiencies,
151
- predict maintenance needs, optimize supply chains, and automate repetitive tasks,
152
- significantly improving operational efficiency and reducing costs.'
 
153
  - source_sentence: What kind of data do you leverage for AI solutions?
154
  sentences:
155
- - 'In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions
156
- for Complex Problems and delieverd a comprehensive Website Development, Production
157
- Support & Managed Services, we optimized customer journeys, integrate analytics,
158
- CRM, ERP, and third-party applications, and implement cutting-edge technologies
159
- for enhanced performance and efficiency
160
-
161
- and achievied 200% Reduction in operational time & effort managing content & experience,
162
- 70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion
163
- & Retention'
164
  - 'Our Solutions
165
 
166
  Strategy & Digital Transformation
@@ -175,6 +167,11 @@ widget:
175
  Providing product development, enterprise web and mobile development, microservices
176
  integrations, quality engineering, and application support services to drive innovation
177
  and enhance operational efficiency.'
 
 
 
 
 
178
  - Our AI/ML services pave the way for transformative change across industries, embodying
179
  a client-focused approach that integrates seamlessly with human-centric innovation.
180
  Our collaborative teams are dedicated to fostering growth, leveraging data, and
@@ -193,12 +190,6 @@ widget:
193
  \ deploy staff augmentation offerings .\nManaged Services\nOperate and monitor\
194
  \ your business-critical applications, data, and IT workloads, along with Application\
195
  \ maintenance and operations\n"
196
- - 'What makes your DevOps solutions stand out from the competition?
197
-
198
- Our DevOps solutions stand out due to our personalized approach, extensive expertise,
199
- and commitment to innovation. We focus on delivering measurable results, such
200
- as reduced deployment times, improved system reliability, and enhanced security,
201
- ensuring you get the maximum benefit from our services.'
202
  - 'Introducing the world of General Insurance Firm
203
 
204
  In this project, we implemented Digital Solution and Implementation with Headless
@@ -222,6 +213,15 @@ widget:
222
  & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during
223
  buy and renewal journeys, 300% Reduction in bounce rate on policy landing and
224
  campaign pages'
 
 
 
 
 
 
 
 
 
225
  pipeline_tag: sentence-similarity
226
  library_name: sentence-transformers
227
  metrics:
@@ -251,49 +251,49 @@ model-index:
251
  type: dim_768
252
  metrics:
253
  - type: cosine_accuracy@1
254
- value: 0.17333333333333334
255
  name: Cosine Accuracy@1
256
  - type: cosine_accuracy@3
257
- value: 0.5466666666666666
258
  name: Cosine Accuracy@3
259
  - type: cosine_accuracy@5
260
- value: 0.6
261
  name: Cosine Accuracy@5
262
  - type: cosine_accuracy@10
263
- value: 0.6933333333333334
264
  name: Cosine Accuracy@10
265
  - type: cosine_precision@1
266
- value: 0.17333333333333334
267
  name: Cosine Precision@1
268
  - type: cosine_precision@3
269
- value: 0.1822222222222222
270
  name: Cosine Precision@3
271
  - type: cosine_precision@5
272
- value: 0.12
273
  name: Cosine Precision@5
274
  - type: cosine_precision@10
275
- value: 0.06933333333333333
276
  name: Cosine Precision@10
277
  - type: cosine_recall@1
278
- value: 0.17333333333333334
279
  name: Cosine Recall@1
280
  - type: cosine_recall@3
281
- value: 0.5466666666666666
282
  name: Cosine Recall@3
283
  - type: cosine_recall@5
284
- value: 0.6
285
  name: Cosine Recall@5
286
  - type: cosine_recall@10
287
- value: 0.6933333333333334
288
  name: Cosine Recall@10
289
  - type: cosine_ndcg@10
290
- value: 0.43705488094312567
291
  name: Cosine Ndcg@10
292
  - type: cosine_mrr@10
293
- value: 0.3539576719576719
294
  name: Cosine Mrr@10
295
  - type: cosine_map@100
296
- value: 0.3663753684578632
297
  name: Cosine Map@100
298
  - task:
299
  type: information-retrieval
@@ -303,49 +303,49 @@ model-index:
303
  type: dim_512
304
  metrics:
305
  - type: cosine_accuracy@1
306
- value: 0.17333333333333334
307
  name: Cosine Accuracy@1
308
  - type: cosine_accuracy@3
309
- value: 0.5333333333333333
310
  name: Cosine Accuracy@3
311
  - type: cosine_accuracy@5
312
- value: 0.6266666666666667
313
  name: Cosine Accuracy@5
314
  - type: cosine_accuracy@10
315
- value: 0.6933333333333334
316
  name: Cosine Accuracy@10
317
  - type: cosine_precision@1
318
- value: 0.17333333333333334
319
  name: Cosine Precision@1
320
  - type: cosine_precision@3
321
- value: 0.17777777777777776
322
  name: Cosine Precision@3
323
  - type: cosine_precision@5
324
- value: 0.12533333333333332
325
  name: Cosine Precision@5
326
  - type: cosine_precision@10
327
- value: 0.06933333333333333
328
  name: Cosine Precision@10
329
  - type: cosine_recall@1
330
- value: 0.17333333333333334
331
  name: Cosine Recall@1
332
  - type: cosine_recall@3
333
- value: 0.5333333333333333
334
  name: Cosine Recall@3
335
  - type: cosine_recall@5
336
- value: 0.6266666666666667
337
  name: Cosine Recall@5
338
  - type: cosine_recall@10
339
- value: 0.6933333333333334
340
  name: Cosine Recall@10
341
  - type: cosine_ndcg@10
342
- value: 0.43324477959330543
343
  name: Cosine Ndcg@10
344
  - type: cosine_mrr@10
345
- value: 0.3495185185185184
346
  name: Cosine Mrr@10
347
  - type: cosine_map@100
348
- value: 0.359896266319179
349
  name: Cosine Map@100
350
  - task:
351
  type: information-retrieval
@@ -355,49 +355,49 @@ model-index:
355
  type: dim_256
356
  metrics:
357
  - type: cosine_accuracy@1
358
- value: 0.22666666666666666
359
  name: Cosine Accuracy@1
360
  - type: cosine_accuracy@3
361
- value: 0.49333333333333335
362
  name: Cosine Accuracy@3
363
  - type: cosine_accuracy@5
364
- value: 0.56
365
  name: Cosine Accuracy@5
366
  - type: cosine_accuracy@10
367
- value: 0.68
368
  name: Cosine Accuracy@10
369
  - type: cosine_precision@1
370
- value: 0.22666666666666666
371
  name: Cosine Precision@1
372
  - type: cosine_precision@3
373
- value: 0.16444444444444445
374
  name: Cosine Precision@3
375
  - type: cosine_precision@5
376
- value: 0.11199999999999997
377
  name: Cosine Precision@5
378
  - type: cosine_precision@10
379
- value: 0.06799999999999998
380
  name: Cosine Precision@10
381
  - type: cosine_recall@1
382
- value: 0.22666666666666666
383
  name: Cosine Recall@1
384
  - type: cosine_recall@3
385
- value: 0.49333333333333335
386
  name: Cosine Recall@3
387
  - type: cosine_recall@5
388
- value: 0.56
389
  name: Cosine Recall@5
390
  - type: cosine_recall@10
391
- value: 0.68
392
  name: Cosine Recall@10
393
  - type: cosine_ndcg@10
394
- value: 0.4383628839300849
395
  name: Cosine Ndcg@10
396
  - type: cosine_mrr@10
397
- value: 0.36210582010582004
398
  name: Cosine Mrr@10
399
  - type: cosine_map@100
400
- value: 0.3731640827722892
401
  name: Cosine Map@100
402
  - task:
403
  type: information-retrieval
@@ -407,49 +407,49 @@ model-index:
407
  type: dim_128
408
  metrics:
409
  - type: cosine_accuracy@1
410
- value: 0.24
411
  name: Cosine Accuracy@1
412
  - type: cosine_accuracy@3
413
- value: 0.48
414
  name: Cosine Accuracy@3
415
  - type: cosine_accuracy@5
416
- value: 0.56
417
  name: Cosine Accuracy@5
418
  - type: cosine_accuracy@10
419
- value: 0.6933333333333334
420
  name: Cosine Accuracy@10
421
  - type: cosine_precision@1
422
- value: 0.24
423
  name: Cosine Precision@1
424
  - type: cosine_precision@3
425
- value: 0.16
426
  name: Cosine Precision@3
427
  - type: cosine_precision@5
428
- value: 0.11199999999999997
429
  name: Cosine Precision@5
430
  - type: cosine_precision@10
431
- value: 0.06933333333333332
432
  name: Cosine Precision@10
433
  - type: cosine_recall@1
434
- value: 0.24
435
  name: Cosine Recall@1
436
  - type: cosine_recall@3
437
- value: 0.48
438
  name: Cosine Recall@3
439
  - type: cosine_recall@5
440
- value: 0.56
441
  name: Cosine Recall@5
442
  - type: cosine_recall@10
443
- value: 0.6933333333333334
444
  name: Cosine Recall@10
445
  - type: cosine_ndcg@10
446
- value: 0.4443870388298522
447
  name: Cosine Ndcg@10
448
  - type: cosine_mrr@10
449
- value: 0.36651322751322746
450
  name: Cosine Mrr@10
451
  - type: cosine_map@100
452
- value: 0.37546675549059694
453
  name: Cosine Map@100
454
  - task:
455
  type: information-retrieval
@@ -459,61 +459,61 @@ model-index:
459
  type: dim_64
460
  metrics:
461
  - type: cosine_accuracy@1
462
- value: 0.08
463
  name: Cosine Accuracy@1
464
  - type: cosine_accuracy@3
465
- value: 0.3466666666666667
466
  name: Cosine Accuracy@3
467
  - type: cosine_accuracy@5
468
- value: 0.49333333333333335
469
  name: Cosine Accuracy@5
470
  - type: cosine_accuracy@10
471
- value: 0.56
472
  name: Cosine Accuracy@10
473
  - type: cosine_precision@1
474
- value: 0.08
475
  name: Cosine Precision@1
476
  - type: cosine_precision@3
477
- value: 0.11555555555555555
478
  name: Cosine Precision@3
479
  - type: cosine_precision@5
480
- value: 0.09866666666666667
481
  name: Cosine Precision@5
482
  - type: cosine_precision@10
483
- value: 0.05599999999999999
484
  name: Cosine Precision@10
485
  - type: cosine_recall@1
486
- value: 0.08
487
  name: Cosine Recall@1
488
  - type: cosine_recall@3
489
- value: 0.3466666666666667
490
  name: Cosine Recall@3
491
  - type: cosine_recall@5
492
- value: 0.49333333333333335
493
  name: Cosine Recall@5
494
  - type: cosine_recall@10
495
- value: 0.56
496
  name: Cosine Recall@10
497
  - type: cosine_ndcg@10
498
- value: 0.3120295466486537
499
  name: Cosine Ndcg@10
500
  - type: cosine_mrr@10
501
- value: 0.23260846560846554
502
  name: Cosine Mrr@10
503
  - type: cosine_map@100
504
- value: 0.24731947636993173
505
  name: Cosine Map@100
506
  ---
507
 
508
  # BGE base Financial Matryoshka
509
 
510
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
511
 
512
  ## Model Details
513
 
514
  ### Model Description
515
  - **Model Type:** Sentence Transformer
516
- - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
517
  - **Maximum Sequence Length:** 512 tokens
518
  - **Output Dimensionality:** 768 dimensions
519
  - **Similarity Function:** Cosine Similarity
@@ -531,9 +531,8 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [B
531
 
532
  ```
533
  SentenceTransformer(
534
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
535
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
536
- (2): Normalize()
537
  )
538
  ```
539
 
@@ -552,12 +551,12 @@ Then you can load this model and run inference.
552
  from sentence_transformers import SentenceTransformer
553
 
554
  # Download from the 🤗 Hub
555
- model = SentenceTransformer("Shashwat13333/bge-base-en-v1.5")
556
  # Run inference
557
  sentences = [
558
  'What managed services does TechChefz provide ?',
559
  ' What we do\n\nDigital Strategy\nCreating digital frameworks that transform your digital enterprise and produce a return on investment.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations.\n\nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings .\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations\n',
560
- 'Introducing the world of General Insurance Firm\nIn this project, we implemented Digital Solution and Implementation with Headless Drupal as the CMS, and lightweight React JS (Next JS SSR on Node JS) with the following features:\nPWA & AMP based Web Pages\nPage Speed Optimization\nReusable and scalable React JS / Next JS Templates and Components\nHeadless Drupal CMS with Content & Experience management, approval workflows, etc for seamless collaboration between the business and marketing teams\nMinimalistic Buy and Renewal Journeys for various products, with API integrations and adherence to data compliances\n\nWe achieved 250% Reduction in Operational Time and Effort in managing the Content & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during buy and renewal journeys, 300% Reduction in bounce rate on policy landing and campaign pages',
561
  ]
562
  embeddings = model.encode(sentences)
563
  print(embeddings.shape)
@@ -602,23 +601,23 @@ You can finetune this model on your own dataset.
602
  * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
603
  * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
604
 
605
- | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
606
- |:--------------------|:-----------|:-----------|:-----------|:-----------|:----------|
607
- | cosine_accuracy@1 | 0.1733 | 0.1733 | 0.2267 | 0.24 | 0.08 |
608
- | cosine_accuracy@3 | 0.5467 | 0.5333 | 0.4933 | 0.48 | 0.3467 |
609
- | cosine_accuracy@5 | 0.6 | 0.6267 | 0.56 | 0.56 | 0.4933 |
610
- | cosine_accuracy@10 | 0.6933 | 0.6933 | 0.68 | 0.6933 | 0.56 |
611
- | cosine_precision@1 | 0.1733 | 0.1733 | 0.2267 | 0.24 | 0.08 |
612
- | cosine_precision@3 | 0.1822 | 0.1778 | 0.1644 | 0.16 | 0.1156 |
613
- | cosine_precision@5 | 0.12 | 0.1253 | 0.112 | 0.112 | 0.0987 |
614
- | cosine_precision@10 | 0.0693 | 0.0693 | 0.068 | 0.0693 | 0.056 |
615
- | cosine_recall@1 | 0.1733 | 0.1733 | 0.2267 | 0.24 | 0.08 |
616
- | cosine_recall@3 | 0.5467 | 0.5333 | 0.4933 | 0.48 | 0.3467 |
617
- | cosine_recall@5 | 0.6 | 0.6267 | 0.56 | 0.56 | 0.4933 |
618
- | cosine_recall@10 | 0.6933 | 0.6933 | 0.68 | 0.6933 | 0.56 |
619
- | **cosine_ndcg@10** | **0.4371** | **0.4332** | **0.4384** | **0.4444** | **0.312** |
620
- | cosine_mrr@10 | 0.354 | 0.3495 | 0.3621 | 0.3665 | 0.2326 |
621
- | cosine_map@100 | 0.3664 | 0.3599 | 0.3732 | 0.3755 | 0.2473 |
622
 
623
  <!--
624
  ## Bias, Risks and Limitations
@@ -642,16 +641,16 @@ You can finetune this model on your own dataset.
642
  * Size: 150 training samples
643
  * Columns: <code>anchor</code> and <code>positive</code>
644
  * Approximate statistics based on the first 150 samples:
645
- | | anchor | positive |
646
- |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
647
- | type | string | string |
648
- | details | <ul><li>min: 7 tokens</li><li>mean: 12.4 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 126.17 tokens</li><li>max: 378 tokens</li></ul> |
649
  * Samples:
650
- | anchor | positive |
651
- |:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
652
- | <code>Is it hard to move old systems to the cloud?</code> | <code>We offer custom software development, digital marketing strategies, and tailored solutions to drive tangible results for your business. Our expert team combines technical prowess with industry insights to propel your business forward in the digital landscape.<br><br>"Engage, analyze & target your customers<br>Digital transformation enables you to interact with customers across multiple channels, providing personalized experiences. This could include social media engagement, interactive websites, and mobile apps." "Empower your employees & partners<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Optimize & automate your operations<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Transform your products<br>The push for digi...</code> |
653
- | <code>What benefits does marketing automation offer for time management?</code> | <code>Our MarTech capabilities<br><br>Personalization<br>Involves tailoring marketing messages and experiences to individual customers. It enhances customer engagement, loyalty, and ultimately, conversion rates.<br><br>Marketing Automation<br>Marketing automation streamlines repetitive tasks such as email marketing, lead nurturing, and social media posting. It improves efficiency, saves time, and ensures timely communication with customers.<br><br>Customer Relationship Management<br>CRM systems help manage interactions with current and potential customers. They store customer data, track interactions, and facilitate communication, improving customer retention.</code> |
654
- | <code>How can your recommendation engines improve our business?</code> | <code>How can your recommendation engines improve our business?<br>Our recommendation engines are designed to analyze customer behavior and preferences to deliver personalized suggestions, enhancing user experience, increasing sales, and boosting customer retention.</code> |
655
  * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
656
  ```json
657
  {
@@ -688,8 +687,8 @@ You can finetune this model on your own dataset.
688
  - `load_best_model_at_end`: True
689
  - `optim`: adamw_torch_fused
690
  - `push_to_hub`: True
691
- - `hub_model_id`: Shashwat13333/bge-base-en-v1.5
692
- - `push_to_hub_model_id`: bge-base-en-v1.5
693
  - `batch_sampler`: no_duplicates
694
 
695
  #### All Hyperparameters
@@ -775,7 +774,7 @@ You can finetune this model on your own dataset.
775
  - `use_legacy_prediction_loop`: False
776
  - `push_to_hub`: True
777
  - `resume_from_checkpoint`: None
778
- - `hub_model_id`: Shashwat13333/bge-base-en-v1.5
779
  - `hub_strategy`: every_save
780
  - `hub_private_repo`: None
781
  - `hub_always_push`: False
@@ -785,7 +784,7 @@ You can finetune this model on your own dataset.
785
  - `include_for_metrics`: []
786
  - `eval_do_concat_batches`: True
787
  - `fp16_backend`: auto
788
- - `push_to_hub_model_id`: bge-base-en-v1.5
789
  - `push_to_hub_organization`: None
790
  - `mp_parameters`:
791
  - `auto_find_batch_size`: False
@@ -814,16 +813,16 @@ You can finetune this model on your own dataset.
814
  </details>
815
 
816
  ### Training Logs
817
- | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
818
- |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
819
- | 0.2105 | 1 | 4.4608 | - | - | - | - | - |
820
- | 0.8421 | 4 | - | 0.3891 | 0.3727 | 0.4175 | 0.3876 | 0.2956 |
821
- | 1.2105 | 5 | 4.2215 | - | - | - | - | - |
822
- | 1.8421 | 8 | - | 0.4088 | 0.4351 | 0.4034 | 0.4052 | 0.3167 |
823
- | 2.4211 | 10 | 3.397 | - | - | - | - | - |
824
- | 2.8421 | 12 | - | 0.4440 | 0.4252 | 0.4133 | 0.4284 | 0.3024 |
825
- | 3.6316 | 15 | 2.87 | - | - | - | - | - |
826
- | **3.8421** | **16** | **-** | **0.4371** | **0.4332** | **0.4384** | **0.4444** | **0.312** |
827
 
828
  * The bold row denotes the saved checkpoint.
829
 
 
10
  - dataset_size:150
11
  - loss:MatryoshkaLoss
12
  - loss:MultipleNegativesRankingLoss
13
+ base_model: sentence-transformers/msmarco-distilbert-base-v4
14
  widget:
15
  - source_sentence: What services does Techchefz Digital offer for AI adoption?
16
  sentences:
17
+ - 'How can we get started with your DevOps solutions?
 
18
 
19
+ Getting started is easy. Contact us through our website. We''ll schedule a consultation
20
+ to discuss your needs, evaluate your current infrastructure, and propose a customized
21
+ DevOps solution designed to achieve your goals.'
22
  - "At Techchefz Digital, we specialize in guiding companies through the complexities\
23
  \ of adopting and integrating Artificial Intelligence and Machine Learning technologies.\
24
  \ Our consultancy services are designed to enhance your operational efficiency\
 
28
  \ \
29
  \ \n DATA INTELLIGENCE PLATFORMS we\
30
  \ specialize in\nTensorFlow\nDatabricks\nTableau\nPytorch\nOpenAI\nPinecone\""
31
+ - 'We are a New breed of innovative digital transformation agency, redefining storytelling
32
+ for an always-on world.
33
 
34
+ With roots dating back to 2017, we started as a pocket size team of enthusiasts
35
+ with a goal of helping traditional businesses transform and create dynamic, digital
36
+ cultures through disruptive strategies and agile deployment of innovative solutions.'
37
+ - source_sentence: Do you provide support 24/7?
38
  sentences:
39
  - 'How do we do Custom Development ?
40
 
 
105
  \ operations.\nTeam Augmentation\nHelp you scale up and augment your existing\
106
  \ team to solve your hiring challenges with our easy to deploy staff augmentation\
107
  \ offerings.\""
108
+ - source_sentence: What challenges did the company face in its early days?
109
  sentences:
110
  - 'Why do we need Microservices ?
111
 
 
145
  and exponential growth. His leadership has been instrumental in shaping TechChefz
146
  Digital into a leading force in the digital transformation arena, inspiring a
147
  culture of innovation and excellence that continues to propel the company forward.'
148
+ - 'What makes your DevOps solutions stand out from the competition?
149
 
150
+ Our DevOps solutions stand out due to our personalized approach, extensive expertise,
151
+ and commitment to innovation. We focus on delivering measurable results, such
152
+ as reduced deployment times, improved system reliability, and enhanced security,
153
+ ensuring you get the maximum benefit from our services.'
154
  - source_sentence: What kind of data do you leverage for AI solutions?
155
  sentences:
 
 
 
 
 
 
 
 
 
156
  - 'Our Solutions
157
 
158
  Strategy & Digital Transformation
 
167
  Providing product development, enterprise web and mobile development, microservices
168
  integrations, quality engineering, and application support services to drive innovation
169
  and enhance operational efficiency.'
170
+ - 'In what ways can machine learning optimize our operations?
171
+
172
+ Machine learning algorithms can analyze operational data to identify inefficiencies,
173
+ predict maintenance needs, optimize supply chains, and automate repetitive tasks,
174
+ significantly improving operational efficiency and reducing costs.'
175
  - Our AI/ML services pave the way for transformative change across industries, embodying
176
  a client-focused approach that integrates seamlessly with human-centric innovation.
177
  Our collaborative teams are dedicated to fostering growth, leveraging data, and
 
190
  \ deploy staff augmentation offerings .\nManaged Services\nOperate and monitor\
191
  \ your business-critical applications, data, and IT workloads, along with Application\
192
  \ maintenance and operations\n"
 
 
 
 
 
 
193
  - 'Introducing the world of General Insurance Firm
194
 
195
  In this project, we implemented Digital Solution and Implementation with Headless
 
213
  & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during
214
  buy and renewal journeys, 300% Reduction in bounce rate on policy landing and
215
  campaign pages'
216
+ - 'In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions
217
+ for Complex Problems and delieverd a comprehensive Website Development, Production
218
+ Support & Managed Services, we optimized customer journeys, integrate analytics,
219
+ CRM, ERP, and third-party applications, and implement cutting-edge technologies
220
+ for enhanced performance and efficiency
221
+
222
+ and achievied 200% Reduction in operational time & effort managing content & experience,
223
+ 70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion
224
+ & Retention'
225
  pipeline_tag: sentence-similarity
226
  library_name: sentence-transformers
227
  metrics:
 
251
  type: dim_768
252
  metrics:
253
  - type: cosine_accuracy@1
254
+ value: 0.10666666666666667
255
  name: Cosine Accuracy@1
256
  - type: cosine_accuracy@3
257
+ value: 0.49333333333333335
258
  name: Cosine Accuracy@3
259
  - type: cosine_accuracy@5
260
+ value: 0.5333333333333333
261
  name: Cosine Accuracy@5
262
  - type: cosine_accuracy@10
263
+ value: 0.6266666666666667
264
  name: Cosine Accuracy@10
265
  - type: cosine_precision@1
266
+ value: 0.10666666666666667
267
  name: Cosine Precision@1
268
  - type: cosine_precision@3
269
+ value: 0.16444444444444445
270
  name: Cosine Precision@3
271
  - type: cosine_precision@5
272
+ value: 0.10666666666666667
273
  name: Cosine Precision@5
274
  - type: cosine_precision@10
275
+ value: 0.06266666666666666
276
  name: Cosine Precision@10
277
  - type: cosine_recall@1
278
+ value: 0.10666666666666667
279
  name: Cosine Recall@1
280
  - type: cosine_recall@3
281
+ value: 0.49333333333333335
282
  name: Cosine Recall@3
283
  - type: cosine_recall@5
284
+ value: 0.5333333333333333
285
  name: Cosine Recall@5
286
  - type: cosine_recall@10
287
+ value: 0.6266666666666667
288
  name: Cosine Recall@10
289
  - type: cosine_ndcg@10
290
+ value: 0.3696947495406473
291
  name: Cosine Ndcg@10
292
  - type: cosine_mrr@10
293
+ value: 0.2864550264550264
294
  name: Cosine Mrr@10
295
  - type: cosine_map@100
296
+ value: 0.2993424751990436
297
  name: Cosine Map@100
298
  - task:
299
  type: information-retrieval
 
303
  type: dim_512
304
  metrics:
305
  - type: cosine_accuracy@1
306
+ value: 0.10666666666666667
307
  name: Cosine Accuracy@1
308
  - type: cosine_accuracy@3
309
+ value: 0.4666666666666667
310
  name: Cosine Accuracy@3
311
  - type: cosine_accuracy@5
312
+ value: 0.5333333333333333
313
  name: Cosine Accuracy@5
314
  - type: cosine_accuracy@10
315
+ value: 0.6133333333333333
316
  name: Cosine Accuracy@10
317
  - type: cosine_precision@1
318
+ value: 0.10666666666666667
319
  name: Cosine Precision@1
320
  - type: cosine_precision@3
321
+ value: 0.15555555555555556
322
  name: Cosine Precision@3
323
  - type: cosine_precision@5
324
+ value: 0.10666666666666667
325
  name: Cosine Precision@5
326
  - type: cosine_precision@10
327
+ value: 0.06133333333333333
328
  name: Cosine Precision@10
329
  - type: cosine_recall@1
330
+ value: 0.10666666666666667
331
  name: Cosine Recall@1
332
  - type: cosine_recall@3
333
+ value: 0.4666666666666667
334
  name: Cosine Recall@3
335
  - type: cosine_recall@5
336
+ value: 0.5333333333333333
337
  name: Cosine Recall@5
338
  - type: cosine_recall@10
339
+ value: 0.6133333333333333
340
  name: Cosine Recall@10
341
  - type: cosine_ndcg@10
342
+ value: 0.3702942720383175
343
  name: Cosine Ndcg@10
344
  - type: cosine_mrr@10
345
+ value: 0.29092063492063486
346
  name: Cosine Mrr@10
347
  - type: cosine_map@100
348
+ value: 0.3047495006876888
349
  name: Cosine Map@100
350
  - task:
351
  type: information-retrieval
 
355
  type: dim_256
356
  metrics:
357
  - type: cosine_accuracy@1
358
+ value: 0.14666666666666667
359
  name: Cosine Accuracy@1
360
  - type: cosine_accuracy@3
361
+ value: 0.4533333333333333
362
  name: Cosine Accuracy@3
363
  - type: cosine_accuracy@5
364
+ value: 0.49333333333333335
365
  name: Cosine Accuracy@5
366
  - type: cosine_accuracy@10
367
+ value: 0.6
368
  name: Cosine Accuracy@10
369
  - type: cosine_precision@1
370
+ value: 0.14666666666666667
371
  name: Cosine Precision@1
372
  - type: cosine_precision@3
373
+ value: 0.1511111111111111
374
  name: Cosine Precision@3
375
  - type: cosine_precision@5
376
+ value: 0.09866666666666667
377
  name: Cosine Precision@5
378
  - type: cosine_precision@10
379
+ value: 0.06
380
  name: Cosine Precision@10
381
  - type: cosine_recall@1
382
+ value: 0.14666666666666667
383
  name: Cosine Recall@1
384
  - type: cosine_recall@3
385
+ value: 0.4533333333333333
386
  name: Cosine Recall@3
387
  - type: cosine_recall@5
388
+ value: 0.49333333333333335
389
  name: Cosine Recall@5
390
  - type: cosine_recall@10
391
+ value: 0.6
392
  name: Cosine Recall@10
393
  - type: cosine_ndcg@10
394
+ value: 0.37318151343456746
395
  name: Cosine Ndcg@10
396
  - type: cosine_mrr@10
397
+ value: 0.3006455026455026
398
  name: Cosine Mrr@10
399
  - type: cosine_map@100
400
+ value: 0.31352550381063704
401
  name: Cosine Map@100
402
  - task:
403
  type: information-retrieval
 
407
  type: dim_128
408
  metrics:
409
  - type: cosine_accuracy@1
410
+ value: 0.12
411
  name: Cosine Accuracy@1
412
  - type: cosine_accuracy@3
413
+ value: 0.4533333333333333
414
  name: Cosine Accuracy@3
415
  - type: cosine_accuracy@5
416
+ value: 0.49333333333333335
417
  name: Cosine Accuracy@5
418
  - type: cosine_accuracy@10
419
+ value: 0.6
420
  name: Cosine Accuracy@10
421
  - type: cosine_precision@1
422
+ value: 0.12
423
  name: Cosine Precision@1
424
  - type: cosine_precision@3
425
+ value: 0.1511111111111111
426
  name: Cosine Precision@3
427
  - type: cosine_precision@5
428
+ value: 0.09866666666666667
429
  name: Cosine Precision@5
430
  - type: cosine_precision@10
431
+ value: 0.06
432
  name: Cosine Precision@10
433
  - type: cosine_recall@1
434
+ value: 0.12
435
  name: Cosine Recall@1
436
  - type: cosine_recall@3
437
+ value: 0.4533333333333333
438
  name: Cosine Recall@3
439
  - type: cosine_recall@5
440
+ value: 0.49333333333333335
441
  name: Cosine Recall@5
442
  - type: cosine_recall@10
443
+ value: 0.6
444
  name: Cosine Recall@10
445
  - type: cosine_ndcg@10
446
+ value: 0.349467831727335
447
  name: Cosine Ndcg@10
448
  - type: cosine_mrr@10
449
+ value: 0.26956613756613756
450
  name: Cosine Mrr@10
451
  - type: cosine_map@100
452
+ value: 0.2814743968696581
453
  name: Cosine Map@100
454
  - task:
455
  type: information-retrieval
 
459
  type: dim_64
460
  metrics:
461
  - type: cosine_accuracy@1
462
+ value: 0.16
463
  name: Cosine Accuracy@1
464
  - type: cosine_accuracy@3
465
+ value: 0.38666666666666666
466
  name: Cosine Accuracy@3
467
  - type: cosine_accuracy@5
468
+ value: 0.4666666666666667
469
  name: Cosine Accuracy@5
470
  - type: cosine_accuracy@10
471
+ value: 0.5466666666666666
472
  name: Cosine Accuracy@10
473
  - type: cosine_precision@1
474
+ value: 0.16
475
  name: Cosine Precision@1
476
  - type: cosine_precision@3
477
+ value: 0.1288888888888889
478
  name: Cosine Precision@3
479
  - type: cosine_precision@5
480
+ value: 0.09333333333333335
481
  name: Cosine Precision@5
482
  - type: cosine_precision@10
483
+ value: 0.05466666666666666
484
  name: Cosine Precision@10
485
  - type: cosine_recall@1
486
+ value: 0.16
487
  name: Cosine Recall@1
488
  - type: cosine_recall@3
489
+ value: 0.38666666666666666
490
  name: Cosine Recall@3
491
  - type: cosine_recall@5
492
+ value: 0.4666666666666667
493
  name: Cosine Recall@5
494
  - type: cosine_recall@10
495
+ value: 0.5466666666666666
496
  name: Cosine Recall@10
497
  - type: cosine_ndcg@10
498
+ value: 0.34485137335598726
499
  name: Cosine Ndcg@10
500
  - type: cosine_mrr@10
501
+ value: 0.28099999999999997
502
  name: Cosine Mrr@10
503
  - type: cosine_map@100
504
+ value: 0.29532589563098727
505
  name: Cosine Map@100
506
  ---
507
 
508
  # BGE base Financial Matryoshka
509
 
510
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/msmarco-distilbert-base-v4](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v4). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
511
 
512
  ## Model Details
513
 
514
  ### Model Description
515
  - **Model Type:** Sentence Transformer
516
+ - **Base model:** [sentence-transformers/msmarco-distilbert-base-v4](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v4) <!-- at revision 19f0f4c73dc418bad0e0fc600611e808b7448a28 -->
517
  - **Maximum Sequence Length:** 512 tokens
518
  - **Output Dimensionality:** 768 dimensions
519
  - **Similarity Function:** Cosine Similarity
 
531
 
532
  ```
533
  SentenceTransformer(
534
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
535
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
 
536
  )
537
  ```
538
 
 
551
  from sentence_transformers import SentenceTransformer
552
 
553
  # Download from the 🤗 Hub
554
+ model = SentenceTransformer("Shashwat13333/msmarco-distilbert-base-v4")
555
  # Run inference
556
  sentences = [
557
  'What managed services does TechChefz provide ?',
558
  ' What we do\n\nDigital Strategy\nCreating digital frameworks that transform your digital enterprise and produce a return on investment.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations.\n\nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings .\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations\n',
559
+ 'In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions for Complex Problems and delieverd a comprehensive Website Development, Production Support & Managed Services, we optimized customer journeys, integrate analytics, CRM, ERP, and third-party applications, and implement cutting-edge technologies for enhanced performance and efficiency\nand achievied 200% Reduction in operational time & effort managing content & experience, 70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion & Retention',
560
  ]
561
  embeddings = model.encode(sentences)
562
  print(embeddings.shape)
 
601
  * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
602
  * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
603
 
604
+ | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
605
+ |:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
606
+ | cosine_accuracy@1 | 0.1067 | 0.1067 | 0.1467 | 0.12 | 0.16 |
607
+ | cosine_accuracy@3 | 0.4933 | 0.4667 | 0.4533 | 0.4533 | 0.3867 |
608
+ | cosine_accuracy@5 | 0.5333 | 0.5333 | 0.4933 | 0.4933 | 0.4667 |
609
+ | cosine_accuracy@10 | 0.6267 | 0.6133 | 0.6 | 0.6 | 0.5467 |
610
+ | cosine_precision@1 | 0.1067 | 0.1067 | 0.1467 | 0.12 | 0.16 |
611
+ | cosine_precision@3 | 0.1644 | 0.1556 | 0.1511 | 0.1511 | 0.1289 |
612
+ | cosine_precision@5 | 0.1067 | 0.1067 | 0.0987 | 0.0987 | 0.0933 |
613
+ | cosine_precision@10 | 0.0627 | 0.0613 | 0.06 | 0.06 | 0.0547 |
614
+ | cosine_recall@1 | 0.1067 | 0.1067 | 0.1467 | 0.12 | 0.16 |
615
+ | cosine_recall@3 | 0.4933 | 0.4667 | 0.4533 | 0.4533 | 0.3867 |
616
+ | cosine_recall@5 | 0.5333 | 0.5333 | 0.4933 | 0.4933 | 0.4667 |
617
+ | cosine_recall@10 | 0.6267 | 0.6133 | 0.6 | 0.6 | 0.5467 |
618
+ | **cosine_ndcg@10** | **0.3697** | **0.3703** | **0.3732** | **0.3495** | **0.3449** |
619
+ | cosine_mrr@10 | 0.2865 | 0.2909 | 0.3006 | 0.2696 | 0.281 |
620
+ | cosine_map@100 | 0.2993 | 0.3047 | 0.3135 | 0.2815 | 0.2953 |
621
 
622
  <!--
623
  ## Bias, Risks and Limitations
 
641
  * Size: 150 training samples
642
  * Columns: <code>anchor</code> and <code>positive</code>
643
  * Approximate statistics based on the first 150 samples:
644
+ | | anchor | positive |
645
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
646
+ | type | string | string |
647
+ | details | <ul><li>min: 7 tokens</li><li>mean: 12.45 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 126.17 tokens</li><li>max: 378 tokens</li></ul> |
648
  * Samples:
649
+ | anchor | positive |
650
+ |:----------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
651
+ | <code>How can digital transformation enhance customer interactions across multiple channels?</code> | <code>We offer custom software development, digital marketing strategies, and tailored solutions to drive tangible results for your business. Our expert team combines technical prowess with industry insights to propel your business forward in the digital landscape.<br><br>"Engage, analyze & target your customers<br>Digital transformation enables you to interact with customers across multiple channels, providing personalized experiences. This could include social media engagement, interactive websites, and mobile apps." "Empower your employees & partners<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Optimize & automate your operations<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Transform your products<br>The push for digi...</code> |
652
+ | <code>How does a CRM system improve customer retention?</code> | <code>Our MarTech capabilities<br><br>Personalization<br>Involves tailoring marketing messages and experiences to individual customers. It enhances customer engagement, loyalty, and ultimately, conversion rates.<br><br>Marketing Automation<br>Marketing automation streamlines repetitive tasks such as email marketing, lead nurturing, and social media posting. It improves efficiency, saves time, and ensures timely communication with customers.<br><br>Customer Relationship Management<br>CRM systems help manage interactions with current and potential customers. They store customer data, track interactions, and facilitate communication, improving customer retention.</code> |
653
+ | <code>How can your recommendation engines improve our business?</code> | <code>How can your recommendation engines improve our business?<br>Our recommendation engines are designed to analyze customer behavior and preferences to deliver personalized suggestions, enhancing user experience, increasing sales, and boosting customer retention.</code> |
654
  * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
655
  ```json
656
  {
 
687
  - `load_best_model_at_end`: True
688
  - `optim`: adamw_torch_fused
689
  - `push_to_hub`: True
690
+ - `hub_model_id`: Shashwat13333/msmarco-distilbert-base-v4
691
+ - `push_to_hub_model_id`: msmarco-distilbert-base-v4
692
  - `batch_sampler`: no_duplicates
693
 
694
  #### All Hyperparameters
 
774
  - `use_legacy_prediction_loop`: False
775
  - `push_to_hub`: True
776
  - `resume_from_checkpoint`: None
777
+ - `hub_model_id`: Shashwat13333/msmarco-distilbert-base-v4
778
  - `hub_strategy`: every_save
779
  - `hub_private_repo`: None
780
  - `hub_always_push`: False
 
784
  - `include_for_metrics`: []
785
  - `eval_do_concat_batches`: True
786
  - `fp16_backend`: auto
787
+ - `push_to_hub_model_id`: msmarco-distilbert-base-v4
788
  - `push_to_hub_organization`: None
789
  - `mp_parameters`:
790
  - `auto_find_batch_size`: False
 
813
  </details>
814
 
815
  ### Training Logs
816
+ | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
817
+ |:----------:|:-----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
818
+ | 0.2105 | 1 | 3.5757 | - | - | - | - | - |
819
+ | **0.8421** | **4** | **-** | **0.3563** | **0.3543** | **0.3378** | **0.3681** | **0.3077** |
820
+ | 1.2105 | 5 | 4.4031 | - | - | - | - | - |
821
+ | 1.8421 | 8 | - | 0.3652 | 0.3547 | 0.3574 | 0.3542 | 0.3579 |
822
+ | 2.4211 | 10 | 3.3423 | - | - | - | - | - |
823
+ | 2.8421 | 12 | - | 0.3783 | 0.3680 | 0.3558 | 0.3807 | 0.3408 |
824
+ | 3.6316 | 15 | 2.3695 | - | - | - | - | - |
825
+ | 3.8421 | 16 | - | 0.3697 | 0.3703 | 0.3732 | 0.3495 | 0.3449 |
826
 
827
  * The bold row denotes the saved checkpoint.
828
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:22f9d81dc197c7a059053b8e73dc8b5b15fb25694c53facba8b17e0c962f4a05
3
  size 265462608
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d91a104071bb5ba669e148ddb4754936ef42ce0974dd548e4bb32e07b965495
3
  size 265462608
modules.json CHANGED
@@ -10,11 +10,5 @@
10
  "name": "1",
11
  "path": "1_Pooling",
12
  "type": "sentence_transformers.models.Pooling"
13
- },
14
- {
15
- "idx": 2,
16
- "name": "2",
17
- "path": "2_Normalize",
18
- "type": "sentence_transformers.models.Normalize"
19
  }
20
  ]
 
10
  "name": "1",
11
  "path": "1_Pooling",
12
  "type": "sentence_transformers.models.Pooling"
 
 
 
 
 
 
13
  }
14
  ]
sentence_bert_config.json CHANGED
@@ -1,4 +1,4 @@
1
  {
2
  "max_seq_length": 512,
3
- "do_lower_case": true
4
  }
 
1
  {
2
  "max_seq_length": 512,
3
+ "do_lower_case": false
4
  }