--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distilbert-training-4 results: [] --- # distilbert-training-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0316 - Accuracy: 0.9944 - Precision: 0.9955 - Recall: 0.9822 - F1: 0.9888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.5 | 262 | 0.0957 | 0.9817 | 0.9562 | 0.9711 | 0.9636 | | No log | 1.0 | 524 | 0.0390 | 0.9939 | 0.9977 | 0.9778 | 0.9877 | | 0.1008 | 1.5 | 786 | 0.0361 | 0.9944 | 0.9955 | 0.9822 | 0.9888 | | 0.1008 | 2.0 | 1048 | 0.0385 | 0.9922 | 0.9866 | 0.9822 | 0.9844 | | 0.0331 | 2.5 | 1310 | 0.0270 | 0.9956 | 0.9977 | 0.9844 | 0.9911 | | 0.0331 | 2.99 | 1572 | 0.0358 | 0.9939 | 0.9955 | 0.98 | 0.9877 | | 0.0151 | 3.49 | 1834 | 0.0292 | 0.9956 | 0.9955 | 0.9867 | 0.9911 | | 0.0151 | 3.99 | 2096 | 0.0316 | 0.9944 | 0.9955 | 0.9822 | 0.9888 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.2.0.dev20230913+cu121 - Tokenizers 0.13.3