--- library_name: transformers license: mit base_model: google/vivit-b-16x2-kinetics400 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: ViViT_WLASL_250_epochs results: [] --- # ViViT_WLASL_250_epochs This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.0544 - Top 1 Accuracy: 0.2617 - Top 5 Accuracy: 0.5577 - Top 10 Accuracy: 0.6670 - Accuracy: 0.2617 - Precision: 0.2325 - Recall: 0.2617 - F1: 0.2253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 893000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Top 1 Accuracy | Top 5 Accuracy | Top 10 Accuracy | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:-----:|:---------------:|:--------------:|:--------------:|:---------------:|:--------:|:---------:|:------:|:------:| | 30.5598 | 0.004 | 3572 | 7.6528 | 0.0010 | 0.0038 | 0.0064 | 0.0010 | 0.0008 | 0.0010 | 0.0004 | | 29.9841 | 1.0040 | 7144 | 7.5548 | 0.0046 | 0.0120 | 0.0176 | 0.0046 | 0.0006 | 0.0046 | 0.0009 | | 28.2597 | 2.0040 | 10716 | 7.2959 | 0.0125 | 0.0337 | 0.0495 | 0.0125 | 0.0053 | 0.0125 | 0.0048 | | 26.1127 | 3.0040 | 14289 | 6.9165 | 0.0304 | 0.0748 | 0.1223 | 0.0301 | 0.0108 | 0.0301 | 0.0120 | | 23.7044 | 4.004 | 17861 | 6.4996 | 0.0447 | 0.1407 | 0.2102 | 0.0447 | 0.0182 | 0.0447 | 0.0196 | | 20.6604 | 5.0040 | 21433 | 6.0328 | 0.0822 | 0.2288 | 0.3121 | 0.0822 | 0.0421 | 0.0822 | 0.0434 | | 17.6287 | 6.0040 | 25005 | 5.5622 | 0.1210 | 0.3041 | 0.4213 | 0.1210 | 0.0714 | 0.1210 | 0.0742 | | 14.3215 | 7.0040 | 28578 | 5.0794 | 0.1576 | 0.3797 | 0.4951 | 0.1573 | 0.0998 | 0.1573 | 0.1038 | | 10.5032 | 8.004 | 32150 | 4.6439 | 0.1915 | 0.4494 | 0.5695 | 0.1915 | 0.1353 | 0.1915 | 0.1386 | | 7.2387 | 9.0040 | 35722 | 4.2461 | 0.2247 | 0.5123 | 0.6297 | 0.2255 | 0.1676 | 0.2255 | 0.1721 | | 3.9708 | 10.0040 | 39294 | 3.9632 | 0.2485 | 0.5587 | 0.6701 | 0.2487 | 0.2034 | 0.2487 | 0.2046 | | 2.1244 | 11.0040 | 42867 | 3.7748 | 0.2587 | 0.5753 | 0.6872 | 0.2587 | 0.2258 | 0.2587 | 0.2220 | | 1.3992 | 12.004 | 46439 | 3.6907 | 0.2543 | 0.5794 | 0.6885 | 0.2543 | 0.2279 | 0.2543 | 0.2210 | | 1.0175 | 13.0040 | 50011 | 3.7060 | 0.2503 | 0.5738 | 0.6874 | 0.2503 | 0.2176 | 0.2503 | 0.2142 | | 0.914 | 14.0040 | 53583 | 3.6819 | 0.2648 | 0.5804 | 0.6915 | 0.2648 | 0.2380 | 0.2648 | 0.2311 | | 0.7522 | 15.0040 | 57156 | 3.7360 | 0.2561 | 0.5758 | 0.6969 | 0.2564 | 0.2325 | 0.2564 | 0.2235 | | 1.045 | 16.004 | 60728 | 3.7846 | 0.2638 | 0.5723 | 0.6877 | 0.2635 | 0.2470 | 0.2635 | 0.2327 | | 0.8234 | 17.0040 | 64300 | 3.8910 | 0.2574 | 0.5692 | 0.6724 | 0.2572 | 0.2386 | 0.2572 | 0.2261 | | 0.7311 | 18.0040 | 67872 | 4.0142 | 0.2561 | 0.5585 | 0.6680 | 0.2561 | 0.2402 | 0.2561 | 0.2262 | | 1.0981 | 19.0040 | 71445 | 4.0544 | 0.2617 | 0.5577 | 0.6670 | 0.2617 | 0.2325 | 0.2617 | 0.2253 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.1